
1-1

,!*

GPIB Signals and Lines

GPIB Remote Control
The General Purpose Interface Bus (GPIB) te originally based on the IEEE Standard 488, 1976 (and later revised
IEEE 488.1,1987).

The GPIB can interconnect many instruments to allow communication with one another over
shared cables. The GPIB uses a bit-parallel, byte-sedal format. The 7200A can achieve a
maximum transmission rate of 400 kBytes per second.

A device connected to the GPIB is either a talker, listener, or controller. Although some de-
vices can change roles, a device can perform just one role at a time.

Talker Places messages or data on the network for transmission to
other devices. Only one device on the network can be ithe talker.

Listener

ei: ¯

ControIIer,,~;

Receives data or commands over the network. Several listeners
may be active at one time.

Governs the operation of the network. A controller, usually a
computer, normally sends program messages to devices and re-
ceives response messages from them. One controller task is to
decide which device is the talker and which is a listener(s). The
controller may assign itself to be the talker at one time, and a
listener at other times. If devices on the network never change
their roles, a controller is not required.

The Communications Screen allows you to select GPIB as the Remote Control port and set
the GPIB address for the 7200A. The Hardcopy screen allows you to select GPIB as the
hardcopy port for printers and plotters. If GPIB is the selected port for hardcopy, no control-
ler is needed and all other devices on the bus must be in =Listen Only" mode.

GPIB Signals and Lines
The GPIB has 16 signal lines and eight ground return lines. Eight of the 16 signal lines form
a bi-directional data bus which transfers data and commands. The remaining eight signal
lines control the bus operation. Three lines are for handshake signals which synchronize
data transmission. The remaining five are management lines which control the flow of infor-
mation across the interface.

1-2
t

GPIB Host and Hardcopy Operation

Setting the GPIB Address
The GPIB address is set in the Communications screen. From the Main Screen, press the
Configure System softkey to display the Configure System setup screen. Then press the
Communication Setup softkey to display the Communications Setup screen. Move the box
onto the =Remote Control from" field and select GPIB. Then move the box onto the =GPIB
Address" field and select an address from 0 to 30.

GPIB Host and Hardcopy Operation
The 7200A can communicate across GPIB as a talker or a listener with a remote host con-
troller to receive remote commands/queries and send responses. For this talker/listener re-
mote control operation, the 7200A conforms to the guidelines specified by IEEE 488.2. The
hardcopy output can also communicate across GPIB in one of two ways. First, if the hard-
copy port is the same as the remote control port, then a remote hardcopy command sends
the output to the remote host as a query response. Second, if the hardcopy port is different ~ :

~ .~ ¯
from the remote control port or and the local hardcopy key is pressed, then the 7200A enters "
Talk Only mode and does not expect any controller present on the bus~ ~ ::

Remote Control Operation over GPIB
Talk/Listen The 7200A enters this mode when the =Remote Control from"

field in the Communications Setup screen is set to GPIB. In this
mode, the 7200A can both receive commands and setups from
the remote host computer and send data and measurement re-
suits.

Hardcopy Operation over GPIB
Talk Only To output hardcopy data over GPIB, the =Hardcopy Port" field in

the Hardcopy screen must be set to GPIB. Setting the Hardcopy
Port has no effect on the selected port until the hardcopy is initi-
ated. If the Hardcopy Port is GPIB, then pressing the local Hard-
copy key will force the 7200A to enter Talk Only mode. Also, if
the Hardcopy Port is GPIB and the Remote Control port is RS-
232-C, then initiating a hardcopy remotely from RS-232-C will
also force the 7200A to enter Talk Only mode. Talk Only is a spe-
cial GPIB mode where there is no controller allowed on the bus;
the 7200A is the only talker and all connected devices must be
listeners (ie., printers/plotters must be in Listen Only
mode). However, if both the hardcopy port and =Remote Control
from" field are set to GPIB, then pressing the local Hardcopy key

1-3

GPIB Host and Hardcopy Operation

Talk/Listen

just sets the User Request (URQ) bit in the Standard Event
Status (*ESR) register, the 7200A cannot enter Talk Only mode
since this may disrupt the conb’oller. Instead, the controller may
query the *ESR register and if the URQ bit is set, the controller
may halt bus activity and synchronously initiate a remote Hard-
copy as describes next.

When both the Hardcopy Port and the Remote Control port are
set to GPIB, then sending the remote command "HARDCOPY"
or "HCPY" over GPIB from the host computer will cause the
7200A to send the hardcopy output to the host computer as a re-
sponse message. In this mode, the 7200A will wait to be ad-
dressed to talk before sending the hardcopy data. The host
computer then has three options in generating the hardcopy:

1) The host computer may read the data into Internal memory
and then send the data to a printer/plotter. This is exactly the
same as reading a query response.

2) The host computer may send the =HARDCOPY" remote com-
mand and then address the printer/plotter to listen and the
7200A to talk and read the data from the 7200A. As the data is
read into the computer’s internal memory, it is also printed/plot-
ted to the printer/plotter which is a Listener.

3) The host computer may send the "HARDCOPY" remote com-
mand and then address the printer/plotter to listen, the 7200A to
talk, and the controller to go into stand-by mode waiting for EOI.
Altematively, the Data Processing Status Register (DPR) could
be programmed to issue an SRQ when hardcopy is complete so
that the host computer can perform other tasks while the hard-
copy is performed.

1.4

GPIB Host and Hardcopy Operation

GPIB

GPIB

RS232

RS2.32

Centronics

Floppy

GPIB

RS232

RS232

GPIB

GPIB/
RS2.32

RS232/
GPIB

Sets the URQ bit in the
*ESR register.

Hardcopy data output in
Talk-Only mode. Address
the device at address 30
to listen before sending
data.

Sets the URQ bit in the
*ESR register.

Hardcopy data is output
immediately.

Hardcopy data is output
immediately.

Hardcopy data is written
to a floppy disk
immediately.

Hardcopy data output
when the controller
addresses the 7200A to
talk.

Hardcopy data output in
Talk-Only mode. Address
the device at address 30
to listen before sending
data.

Hardcopy data output
when controller asserts
CTS (Hardwire mode)
until receipt of XOFF.

Hardcopy data is output
immediately.

Hardcopy data is output
immediately.

Hardcopy data is written
to a floppy disk
immediately.

1=5

GPIB Device Interconnections

GPIB Device Interconnections
The devices on the GPIB network may be connected in any combination of star or linear ar-
rangements (Figure 1.1). Standard IEEE 488.2 cables must be used to connect all the de-
vices and total length must not exceed 20 meters. The devices must conform to these rules:

¯ At least half the devices on the network must be turned on.

¯ One network can connect no more than 15 devices (including the controller).

¯ One device must be connected for every two meters of cable, assuming one
device presents one standard device load. The 7200A’s GPIB connector is
located on its rear panel.

¯ Each device must have a unique bus address.

DEVICE B

DEVICE C

DL=VlCE D

OL=VtC;E A

DEVICE B

I I EC
STAR CONFIGURATION LINEAR CONFIGURATION

Figure 1.1 : Examples of GPIB Network Arrangements

1-6

RS-232-C Remote Control

The 7200A interface is defined by the following GPIB function codes:

For a description of these functions and their subsets, see IEEE Standard 488.1, Section 2.2 through 2.12.5. The
IEEE Standard is published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New
York, New York 10017.

INTERFACE FUNCTION

Controller (CO)
Source Handshake (SH1)
Acceptor Handshake (AH1)
Talker (T6)

Listener (L4)

Service Request (SR1)
Device Trigger (DT1)
Device Clear (DC1)

Parallel Poll (PP0)
Remote Local (RL1)
Electrical Interface (E2.)

No controller capability.
Complete source handshake capability.
Complete acceptor handshake capability
Basic talker with serial poll capability and
unaddress* if MLA (My Listen Address).
Basic listener with unaddress if MTA (My
Talk Address).
Complete serial poll capability.
Capable of responding to device trigger.
Responds to device clear (universal or
selective).
No parallel poll capability
Complete remote/local capability
SRQ, NRFD, and NDAC are tri-state lines

*Unaddress refers to the action taken when the interface switches its
function. This action effectively clears the current function before the
next function is selected.

Table 1.1: 7200 IEEE-488 Function Codes

RS-232-C Remote Control
The 7200A can also be operated from a computer or terminal via its RS-232-C port. RS-232-
C uses serial transmission and complies with the Electronic Industries Association’s RS-232-
C standard. (The equivalent international standard is ISO V24 which is generally compatible
with the RS-232-C version.)

Unlike the GPIB where many devices can be interconnected, the RS-232-C connects just
two devices. Only three communication lines are necessary to establish the interface: trans-
mired data, received data, and logic ground. However, the additional lines, RTS (request to
send) and CTS (clear to send), permit transfer of data only after confirming that the receiving

1-7

RS-232-C Configuration

device is capable of accepting more data. That is, the sender sends an RTS and waits for a
CTS from the receiver before sending data. This protocol guarantees that data does not over-
run the receiver’s buffer.

RS-232-C offers compatability with most computers. It uses a bit-serial data format with a
maximum transmission rate of 19,200 bits per second, much less than that of GPIB.

Each data word is transmitted as a separate packet with its own start and stop markers, or
bits. The RS-232-C standard defines the electrical characteristics of these bits and the com-
position of each packet. Their composition and transmission rate must be the same for both
the device and the 7200A. The Communications Setup screen is used to select transmission
rate, error checking (parity), and number of stop bits. In order to establish communications,
additional serial transmission characteristics may be set remotely using the COMM_RS232
remote command. See Section 5: Communication Commands for a description of this com-
mand.

RS-232-C Configuration
Setup the Serial Port

The 7200A contains a 9-pin, male RS-232-C connector for serial communication with a
printer, terminal, or computer. To connect an RS-232-C line to the 7200A, use a female DB9-
D connector. If the computer has a DB25-D connector, use a DB9-D to DB25-D cable adapt-
er. The optional CTS and RTS handshaking guarantees that data passed between a remote
computer and the 7200A will not overrun the 7200A or the computer’s RS-232-C buffer.

Select the desired settings for the interface using the Communications Setup screen:

1. From the Main Screen, press the Configure System softkey to display the Configure
System setup screen.

2. Then press the Communication Setup softkey to display the Communications Setup
screen.

RS-232-C Host lnterconnection
Although the RS-232-C standard defines signal lines and electrical characteristics, it does
not define mechanical characteristics. The 7200A RS-232-C output port is configured as an
RS-232-C Data Terminal Equipment so that data is sent from pin 2 and received on pin 3.
For remote operation, the RS-232-C port must be connected to a computer terminal.
The following diagrams are used for various host drivers.

1-8

RS-232-C Configuration

"Data Communication Equipment"
(7200A) "Data Terminal Equipment"

Figure 1.2: RS-232-C Connection to an IBM-PC Host

DB9 to DB25 Wiring

This wiring configuration is used for IBM-PCs and compatibles with DB25-D connectors
configured as Data Terminal Equipment¯ Note that for XON-XOFF communication protocol,
only pins 2, 3, and 5 on the DB9-D connector are needed¯ Also, commercially available DB9-
to-DB25 adapter cables for the IBM-PC swap pins 2 and 3 and pins 7 and 8.

7200A Computer
(DB9, DTE) (DB25, DTE)

Pin 2 Tx Pin 2

Rx
Pin 3 Pin 3

Gnd
Pin 5 Pin 7

If Hardwaire handshaking is used (see "Communications Setup,
page 3-119"), the following connections must also be satisfied.

CTS
Pin 7 Pin 5

Pin 8 RTS Pin 4

1-9

RS-232-C Configuration

DB9 to DB9 Wiring
For IBM PC-AT types with DB9-D connectors configured as Data Terminal Equipment.

7200A Computer
(DE9, DTE) (DB9, DTE)

Tx
Pin 2 Pin 2

Pin 3 Pin 3

Pin 5
Gnd

Pin 7

If Hardwaire handshaking is used (see "Communications Setup,
page 3-131"), the following connections must also be satisfied.

Pin 7
CTS Pin 5\/

Pin 8 --~,
Rx

Pin 4

DTE to DCE Wiring
For non-IBM types with DB9-D connectors configured as Data Communications Equipment.

7200A Computer
(DB9, DTE) (DBg, DCE)

Tx Pin 2Pin 2
Rx

Pin 3 Pin 3

Pin 5 Gnd Pin 7

If Hardwaire handshaking is used (see "Communications Setup,
page 3-131"), the following connections must also be satisfied.

Pin 7
CTS Pin 7

Pin 8 Pin 8

1-10

RS-232-C Configuration

RS-232-C Interconnections for Hardcopy
When connecting an RS-232-C serial printer/plotter to the 7200A, the printer/plotter configu-
ration must match the 7200A RS-232-C port settings. To modify settings, use the Communi-
cations Setup screen.

RS-232-C Connection

=Data Communication Equipment"
(7200A)

=Data Terminal Equipment"

Figure 1.3: RS-232-C Connection to an RS-232-C
Serial Plotter

DB9 to DB25 Wiring
NOTE: The 7200A RS-232-C interface is a DB9-D connector. Use
an adapter cable to connect to an RS-232-C DB25-D connector.

Pin2 ~n2

~n8

~n7

Plot I

Pin4

Pin8

Pin8

PIn 7

Pin4.

Pin5

Pin6
Pin 20

Pin 8

1-11

RS-232-C Host Operation

Parallel-Centronics Wiring
The 7200A uses a standard DB25-D female connector as the Centronics parallel output port.
An adaptor cable is required to adapt the 7200A DB25-D connector to the standard 36-pin
bail lock connector used on most Centronics printers.

7200A ~

Printer

Figure 1.4: Output to Centronics type Printer/Plotter

RS-232-C Host Operation
The 7200A may be controlled by a Remote Host computer in a similar manner as in GPIB. It
is able to accept commands, strings, and arbitrary block data and send back responses to
queries. However, RS-232-C communications is limited to the transfer of ASCII characters
in the range 1 to 127. Also, any character whose value is below a <space> (ASCII 32) can
not be used as part of a valid command or query but may be used as a valid <PROGRAM
MESSAGE TERMINATOR>. The exception to this rule is the <ESCAPE> character (ASCII
27). When <ESC> is sent to the 7200A, the very next character sent is interpreted to have
special meaning.

1-12

The valid Escape sequences are as follows:

RS-232-C Host Operation

Command

<ESC>(

<ESC>)

<ESC>[

<ESC>]

<ESC>C

<ESC>R

<ESC>L

<ESC>F

<ESC>T

Descriptiorl

Selects HARDWIRE handshake mode

Selects XON-XOFF handshake mode

Selects Echo off (half-duplex mode)

Selects Echo on (full-duplex mode)

Sends a DCL (device clear) command

Sends a REN (remote enable) command

Sends an LCL (local enable) command

Sends an LLO (local lockout) command

Sends a GET (group execute trigger) command

Table 1.2: Valid Escape Sequences

All <ESC> commands are immediately executed upon being parsed. Their intent is to simu-
late GPIB commands over the serial port.

When the 7200A receives ASCII block data in excess of its input buffer size it will send
XOFF (ASCII 19) to hold up the transfer of data from the Remote Host until it has processed
the current buffer. Also, if the handshake mode is HARDWlRE, it will de-assert CTS (Clear
To Send). When the 7200A is ready for more data, it will send XON (ASCII 17) and assert
CTS.

For a complete description of setting the configurtation of the RS-232-C port for Remote
Host communications, see the COM_RS232 remote command in Section 5 (Communication
Commands).

1-13

Section 2: Command S ntax

The following segments describe the rules and syntax for controlling the 7200A from a re-
mote computer over either GPIB or RS-232-C. Any differences between the ports are noted.

Message Types
Commands

Responses

Commands have two categories: action and query.

An action command causes the 7200A to make an assignment
or perform a function. For example, it might cause the 7200A to
calibrate all the plug-ins, or an assignment may result in a new
front panel setting, a communication parameter receiving a new
value, or the date being set.

Commands that request results are called queries. They ask the
7200A to return waveform data, settings, or measurements.

These are replies sent from the 7200A in response to query com-
mands.

Waveforms

Status

Waveform data is a special form of response. It may be output in
binary or hexadecimal formatted blocks. These formats are more
compact than that used for response messages, so a large num-
ber of data points can be transferred in less time.

A status message indicates the 7200A’s current internal state.

With few exceptions, all commands, responses, and status messages are encoded accord-
ing to the American Standard Code for Information Interchange (ASCII) and are strings
printable characters. Upper and lower case characters are interchangeable.

2-1

Command Processing

Message Direction As shown in Figure 2.1, the controller sends commands to the
7200A, and the 7200A sends waveforms, responses, and status
messages back to the controller.

Controller

Action and Query
Commands

Waveforms

Responses

Status

7200A

Figure 2.1: Message Directions

Command Processing
Commands are not processed until the 7200A receives an <end>, or, in the case of wave-
form input, when the 7200A input buffer is full (i.e., normally, no action is taken on any part
of a command message until the entire message is received or the message size exceeds
the input buffer size).

Command Processing Order
Valid commands are processed in the order they are received.

Some remote commands cannot be performed immediately. For example, it is not possible
to read channels that are armed and waiting for a trigger, since the memories associated
with these channels are continuously being written. If the 7200A receives a command it can-
not perform immediately (another example is the STORE of a channel), it defers executing
the command until the needed waveform is acquired.

2-2

IEEE-488 Standard Messages

Command Errors
Before attempting to execute a command or query, the 7200A confirms that all the required
parts of the command are provided, and that all the arguments are within required ranges.

If an error is generated, the 7200A will set the appropriate status and, if enabled, report it to
the host computer. The host can then interrogate the status byte(s) to determine the nature
of the error. Refer to Section 4 for details on status bytes.

NOTE: Commands preceding and following an error in
multi-command messages are still executed. This provides
consistent operation whether commands are sent one at a time or
several per message.

Output from the 7200A
When the 7200A generates a response to a query, the controller should read it before send-
ing a second query. If the controller sends a second query before reading the response to
the first one, the 7200A interprets this as an Interrupted Action and performs the following:

1. Upon receiving the <end> of the second query, the 7200A flushes its output buffer of all re-
sponses to previous queries.
2. The 7200A sets a Query Error bit, and
3. The 7200A fills the output buffer with the response to the second query.

IEEE-488 Standard Messages
This section explains how the 7200A reacts to the Standard 488.2 messages.

NOTE: This section pertains to GPIB only

Serial Poll Function The 7200A implements a full Serial Poll Interface Function:

1. It can assert the SRQ (Service Request) control line.

2. It will respond with the current serial poll byte or STB when
addressed to Talk and after the Serial Poll Enable interface
message is received.

Receiving the Trigger
Message

3. After transmitting its status message, the 7200A stops assert-
ing the SRQ line and clears its internal status byte.

The 7200A responds to the Trigger message [Group Execute
Trigger (GET) or the *TRG command] by arming all plug-ins.
The trigger signal, also available on the rear panel, can be used

2-3

IEEE-488 Standard Messages

Interface Clear

Device Clear (Sdective
or Universal)

Go to Local, Go to Remote,
Go to Remote with
Lockout Local

for external hardware or event synchronization to internal 7200A
operations. It is executed after all previously received commands
have been processed.

The Interface Clear message (asserting IFC line) is an asynchro-
nous control line that causes all bus activity to halt. When the
7200A receives the IFC message, it becomes unaddressed,
stops talking or listening, and will not participate in future bus
transactions until readdressed to talk or listen.

The 7200A will respond to a Selective Device Clear or a Univer-
sal Device Clear interface message. The former requires that the
7200A first be addressed to listen, followed by the Selective De-
vice Clear message. The latter does not require that the instru-
ment be previously addressed to listen. Device Clear causes the
input buffer, the output queue, and the message available
(MAV) status bit to be cleared.

The 7200A can operate in Local or Remote mode. In Local
mode, all front panel controls are operational and commands
from the host computer will also be processed. In Remote mode,
the 7200A operates under computer control and no front panel
controls are operational except the Local softkey (if enabled).
(The 7200A always powers on in Local mode.)

NOTE: The 7200A processes all messages regardless of being
in Remote or Local modes.

The 7200A switches to Remote mode (with Local softkey en-
abled) when the 7200A receives the command "REM", or a com-
mand is sent with the REN line asserted. All instrument settings
remain unchanged during local-to-remote transitions. The lower
left part of the 7200A screen indicates that Remote mode is en-
abled and the Local softkey appears. No other front panel con-
trois operate.

If the 7200A is under remote control and the Local softkey is
pressed, the instrument interrupts program control and returns to
local control. Data and/or settings can now be changed locally.

CAUTION: To prevent a transition back to local mode the 7200A
can be placed in a Local Lockout state using the "LLOK" com-
mand. in Local Lockout state, all front panel keys and knobs are

2.4

IEEE-488 Standard Messages

disabled. Once Remote with Local Lockout is set, it can only be
cleared when the 7200,4 is put into Local mode by sending the
=L OC" command or readdressing the 7200A with REN deas-
serted.

Message Syntax
Messages consist of one or more data bytes which are sent over the bus.
All messages sent to and received from the 7200A are formed of English words except for
waveform transfers. Abbreviations, typically two to four characters, are also defined to
achieve higher throughput. Lower or upper case alphabetic characters are interchangeable.

NOTE: Any message received by the 7200A must conform to IEEE-
488.2 syntactic requirements. (If a violation is detected, the 7200A
will generate an error which indicates an invalid command.) The
syntax for each type of message is described below.

Action Command Syntax
Commands are sent to the 7200A to initiate various actions. They contain Headers, some-
times an Argument(s), and a Terminator:

Header Identifies what action to take; e,g., set the date, stop acquisition.

Ar~nt(s)

Terminator

Qualifies or supplements the header. The argument acts as a pa-
rameter(s) or data to the header. It is included in the command
only if a header is defined to require an argument(s). For exam-
ple, an argument indicates what date to set.

Indicates the end of the command message. GPIB and
RS-232-C have different message terminators. In this manual,
the command message terminator is represented by <end>.

2-5

IEEE-488 Standard Messages

HEADERI
Space

r

Figure 2.3: Action Command Syntax

Unless specifically noted, white spaces (ASCII 32 decimal) between the parts of a command
do not affect its processing. Upper and lower case characters are interchangeable. The gen-
eral format of a command follows:

Command Header

PREFIX I
Plug.in channelI

Imnemonic ~j_
’ Long Form

Imnemonic
, Short Form

Figure 2.2: Command Header

2-6

IEEE-488 Standard Messages

Command Arguments

~--~ Numeric

’ ’ String ~

Figure 2.4: Command Arguments

Query Syntax
The Syntax of a Query is very similar to that of an Action command. A Query command adds
a question mark (=?") immediately after the last character of the header. For example, to find
the current value for the offset on channel 2 of plugin B, send: B2:OFFSET?.

NOTE:Many action commands have a corresponding query command which may have
arguments.

Figure 2.5: Query Syntax

2,-7

IEEE-488 Standard Messages

Multiple Commands
A message containing more than one command before the terminator is called a compound,
or multiple command message.

Sending a multiple command increases throughput. Each command (header and any argu-
ments) is separated from the following one by a semicolon (";"). Space(s) on either side
the semicolon do not affect processing. Upper and lower case characters are interchange-
able.

j ACTION 1
COMMAND -

QUERY 1 "
COMMAND

Figure 2.6: Multiple Commands

A multiple command can include Action and Query commands. For example, one multiple
command can perform auto setup, request the current time and date being used, and exe-
cute a trigger command as follows:

ASET; DATE? ; *TRG <end>

2-8

IEEE-488 Standard Messages

Command Header

A command header defines the action to perform. The header begins with a letter and can
be followed by any combination of up to 15 letters, numbers, and underscores. Any com-
mand with more than four characters has a short form. (Long and Short form headers can be
intermixed.) Using the short form (four or less characters) increases throughput. The long
form, however, makes understanding program code easier. For example, to set the timebase
remotely, either TIME DIV or TDIV can be sent.

Command headers comprise three broad categories according to their syntactic make-up:

¯ Directed Header,

¯ System Header, and

¯ Standard Header.

Directed Header
This type of header directs an action at an object. The object can be either a plug-in, chan-
nel, trigger source, or trace. The prefix identifies the object being acted upon. It is followed
by a colon (=:") and the header which indicates the action performed.

prefix:header

Only one prefix is permitted per header.

NOTE: If a command is defined as having a prefix, the prefix must al-
ways be specified.

The types of prefixes are:
Mug.in The plug-in is identified by location. The mainframe plug-in slot

nearest the display is slot A. Slot B is to the right of A.

Use the plug-in prefix on/ywhen a command operates on the
plug-in controls, such as when setting the timebase. To set the
timebase to 5 msec per division for the plug-in in slot A, for ex-
ample, use the command:

A:TIME_DIV 5ms

2-9

IEEE-488 Standard Messages

Channel

Source

Trace

The input channel is identified by its location in the plug-in. The
uppermost left BNC connector in plug-in A is labeled AI. The
next lower connector is A2, and so on. To modify all channels,
do not specify a specific channel.

Use the channel prefix only for commands which affect vertical
amplifiers, such as when setting the vertical sensitivity. To set
the vertical sensitivity to 5 mV per division for plug-in A, channel
1, for example, use the command:

A1 :VOLT_DIV 5mV

To set all of the plug-in’s channel settings to be the same, use
the plug-in prefix with no channel designation. For example, to
set offset to 10 mV for all channels, use the command:

A:OFST 10 mV

Since a rigger command can specify settings for each trigger
source, it must be specified as a prefix. The prefix symbols are
either:

An input channel as previously defined;
Plug-in and =EX" for the external trigger signal;
Plug-in and =EX10" for the external tdgger signal divided by
ten; or
Plug-in and =LINE" for triggering on the power line frequency.

To set the trigger level to 5 mV per division for the external trig-
ger signal divided by ten, for example, use the command:

AEX10:TRIG_LEVEL 5mV

Traces 1 through 8, indicated as T1 through T8, define the proc-
essing and display characteristics of traces. For example, to
query the horizontal position of trace 7 use the command

T7:HOR_POSITION?

2-10

IEEE-488 Standard Messages

System Header

This type of header indicates an action that affects general oscilloscope operation; that is, an
operation not necessarily restricted to a particular plug-in, channel, or trace. Examples are
changing the grid selection and cursor type. The System Header format disallows a prefix.
For example, to turn on local display processing, use the command:

DISPLAY_ON

Standard Header

This type of header indicates a command that is explicitly required by the IEEE-4882 stand-
ard. These commands have the same format as the System Header, except an asterisk ("*")
immediately precedes the first letter of the command. For example, the *RST command initi-
ates a device reset, *IDN? asks the device for its identification.

Command Argument(s)
A command argument(s) qualifies or supplements the header. It is included in the command
only if a command is defined to require an argument(s). For example, an argument indicates
what value to set for volts per division.

Most commands require one or more arguments to describe a desired action in detail (see
Figure 2.4). The first argument is separated from the header by one or more spaces. Argu-
ments are separated from each other by commas.

The possible types or arguments are:

Decimal Numeric Any number in numeric repesentations NR1, NR2, or NR3 as de-
fined by ANSI X3.42-1975. These refer to integers (e.g., -45),
floating point (e.g., 3.1443), or exponential values (e.g.,
3.1459E+00), respectively.

The ASCII characters "E" or "e" are used to delimit the mantissa
from the exponent in exponential arguments. Spaces are al-
lowed between the exponential delimiter and the digits (0
through 9), but are not allowed between digits, or between the
decimal point (.) and the digits.

Numeric values with fractional parts must be expressed as a
floating point or an exponental value. For example, 3.14159 and
3.14159E+00 are both acceptable standard formats.

2-11

IEEE-488 Standard Messages

The allowable range depends on the command. If a numeric is
sent to the 7200A and has a precision greater than allowed, the
7200A will truncate, process the result, and generate a warning.
If a numeric not included in the specified set is sent, a valid nu-
medc closest to that sent is used. For example, vertical position
must be specified with a value that is a multiple of 0.02. If 68.01
were sent, 68.00 is used.

Suffixes can replace exponential notation. For example, these
commands are equivalent:

TIME_DIV 5.00E-6
TIME_DIV 5.00 US

Valid suffixes are listed in the following table:

Allowed<Suffix Mult.>Mnemonics

Definition Mnemonics

1E18 EX
1E15 PE
1E12 T
1 E9 G
1 E6 MA
1E3 K
1E-3 M
1E-6 U
1E-9 N
1E-12 P
1E-15 F
1E-18 A

NOTE: Only engineering unit multipliers

are allowed.

Table t~cen from ANSI/tEEE SId 488,2-1987

Table 2.1: Valid Suffix Mnemonics

2-12

Non-Decimal
Numeric

String

Waveform Data

IEEE-488 Standard Messages

Numbers can also be used in bases other than base 10. For ex-
ample, each bit in a status byte may be understood better if the
byte is specified in hexadecimal or binary.

Precede non-decimal arguments with a pound sign ("#") fol-
lowed by an "H" for hexadecimal, "Q" for octal, and "B" for bi-
nary. Note that numbers are treated as unsigned with an implicit
radix point. For example, #HFF and #B11111111 are both 255.

Some commands require or allow String arguments such as
"ON" or "OFF". These arguments contain 7-bit ASCII alphanu-
meric characters. A string begins with an alpha character which
may be followed by alphanumeric characters A through Z, a
through z, 0 through 9, and =._". Carriage return or line feeds are
not valid characters. Note that the oscilloscope treats upper and
lower case characters identically.

Each command definition specifies the maximum number of
characters for its string argument(s).

Quoted strings are delimited by either an apostrophe (’) or a quo-
tation mark (=). The 7200A returns quoted strings with quotation
marks. The same type of delimiter that opens a quoted string
must close it. Strings within strings are allowed as long as each
string has the same opening and closing delimiters.

A quoted stdng may not be terminated with an <end> character.
For example, "test <end> is an invalid string.

The WAVEFORM command lets you send or read a complete
waveform. The waveform usually contains a very large amount
of data. Due to its length, a special formatting convention is used
to transfer the large data blocks. See page 2-17 "Waveform
Data Syntax" for an explanation of this format.

2-13

IEEE-488 Standard Messages

Keywords

Some commands have several arguments. For example, the command for configuring a
hardcopy device can have up to ten arguments that set such characteristics as plotter speed
and paper size. Rather than listing every argument when only a few need changing, the argu-
ment specified is identified by a =keyword".

A keyword is a character argument that must be followed by a comma, and then an associ-
ated value for the characteristic being set. The value may be one of the four types of argu-
ments previously described.

Arguments not specified remain unaffected.

For example, the INTENSITY command is used to program the brightness of the traces and
grids independently. To set the grid’s intensity to half scale, send: INTENSITY GRID,,50. The
trace intensity remains unchanged.

For commands with several keywords, the order of the keyword-value pairs does not matter.

NOTE: A multi-argument command that does not use keywords
must have all its arguments listed, and ordered in the same se-
quence as shown in the command definition.

An example of a command with no keywords is the date command, which requires specifica-
tion of the day followed by the month, etc.

When querying most keyword commands, you can give the keyword(s) as an argument. For
example, CRST? HABS, VABS returns only the absolute horizontal and vertical cursor posi-
tions. If no argument is specified, all values are returned.

Command Terminators

Commands sent one at a time must end with a terminator. In this manual, terminators are in-
dicated by <end>. Alternatively, multiple commands can be sent together by terminating
each command with a semicolon and terminating the entire multiple command message with
<end>.

GPIB Terminators

The only valid GPIB terminator is Eel (End or Identify) asserted with the last character sent.
This is necessary because of the possibility of binary data transmission into the 7200A
would make termination on a line feed alone impossible.

NOTE: The 7200A always terminates its response messages with a
line feed character with EOI asserted.

2-14

Response Syntax

RS-232-C Terminators

The COMM_RS232 command is used to define the <end> for command messages, and
separately for response messages.

The keyword El defines the <end> of command messages as a number from 1 through 127.
The default value is carriage return (decimal 13). If another value is selected, it must not
used elsewhere in the command argument; otherwise, the 7200A will prematurely terminate
the command.

The keyword EO defines the end of messages transmitted by the 7200A. The initial value is
CR LF (carriage return, then line feed).

For example, Arbitrary Block Program Data suitable for waveform transfers is sent as ASCII
alphanumeric characters between the range 0 through 9 and A through F. Therefore, select
a number that does not have a value corresponding to the ASCII decimal values of these al-
phanumeric characters.

Response Syntax
Query commands sent to the 7200A result in information being returned. The packet of re-
turned information is called a response message. This message typically contains measure-
ment results, settings, or status information. If multiple queries are sent in the same
command, the responses will be returned in one multi-response message with the individual
responses separated by semicolons (";").

The computer should completely read any responses from the 7200A before sending new
queries. If the computer sends a query command, starts reading the response, and issues
another command before completely reading the results of the first query, the 7200A inter-
prets this as an interrupted action, sets the query error status bit, clears the output
queue,and sends the second response.

Responses conform to a general format, and with few exceptions are ASCII strings of print-
able characters. Generally, the syntax of any response is as follows:

2-15

Response Syntax

HEADER one
space

Arguments

Figure 2.7: Response Syntax

where

<header>

<argument data>

<end>

The syntax of a response header is the same as for a command
header (see page 2-9). Prefixes are supplied when applicable.
The header can be retumed in either short, long, or no header
(OFF) format as specified by the command COMM_HEADER
(see page 5-21). Short format produces an adequate response
for most circumstances. The long format yields the header in full
English format for increased legibility. The OFF format achieves
the fastest response time and requires little or no parsing.

This part contains the information requested by the query com-
mand. It is separated from the header by one space. The argu-
ment data can be any of the types described in the Command
Arguments section, p. 2-11.

For GPIB, the <end> of a single or a multi-response message is
always a line feed sent with EOI asserted.

For RS-232-C, <end> is the current setting of the EO argument
of the COMM_RS232 command which is defined as a string.
The default string is a CR (carriage return) followed by a LF (line
feed). These are decimal 13 followed by decimal 10.

If the <end> string is contained within the response message,
the computer may prematurely terminate the response from the
7200A. Programming <end> is provided for flexible response for-
mats but must be used with caution.

2-16

Waveform Data Syntax

If COMM_HEADER SHORT was sent before the following multi-response message:

T1 :HOR_POSlTION?; *STB?; T1 :VERT_POSrrlON?<end>

The response would be:

T1 :HPOS 1.0,1; *STB 48; VPOS 1.0<end>

Waveform Data Syntax
Waveform data is a specially formatted argument used to transfer large amounts of binary or
hexadecimal data. The WAVEFORM command uses this argument to send data to, or to
read data from the 7200A.

The 7200A supports three block data formats:

¯ Definite length arbitrary block data,

¯ Indefinite length arbitrary block data, and

¯ "OFF".

The COMM_FORMAT command (see page 5-19) is used to select the desired format.

Waveform Data transfers are used by the 7200A to send waveforms to a host controller. The
waveform query will be used in this section to describe the waveform data response format.
The WF? waveform query may optionally be followed by ALL, DESC, TEXT, DAT1, and
DAT2 to query specific parts of the waveform. If nothing follows the WF?, then ALL is as-
sumed.

Data Element Format
Each waveform point is called a data element. Using two commands, COMM_FORMAT and
COMM_ORDER, the 7200A supports several methods of forming data elements. You can
specify:

¯ the size or the width of the data element (i.e., the number of bytes),

¯ how it is encoded (i.e., binary or hexadecimal) and

¯ the arrangement of bytes for multi-byte words.

2-17

Waveform Data Syntax

Data Width
The COMM_FORMAT command is used to select the size or width of the data element; that
is, the number of 8-bit data bytes used to format a data element.

NOTE: Internal to the 7200A, waveforms are kept as 16-bit signed
numbers. During readout to the computer, the 7200,4 converts the in-
temal data words to one of."

BYTE

WORD

8 bits, single byte per data element.

16 bits, 2 bytes per data element.

Data Encoding

The block data bytes are either O-bit binary or hexadecimal encoding. Use the COMM_FOR-
MAT command to select the encoding.

BINary Binary format, the most compact, provides the fastest transfer.

NOTE: Binary format cannot be used over
RS-232-C.

HEXadecimal Hexadecimal format These numbers are indicated as AS-
CII characters between =0" through "9" and =A" through =F". Two
characters represent each byte of data. The four most significant
bits are represented by the first hexadecimal character, and the
four least significant bits by the second. Commas do not sepa-
rate the characters within a byte or between bytes. Therefore, to
separate the values into bytes, the computer uses the data en-
coding specified by the COMM_FORMAT command.

A block of eight bytes, for example, is received in this format as
follows:

HEXADECIMAL ASCII
45 41 30 46 31 33 30 34 0d 0a EAOF1304<end>

where EA, OF, 13, 04 are the hexadecimal values for four suc-
cessive 8-bit data bytes. (In decimal notation these values corre-
spond to 234, 15, 19, and 04 respectively.) In this example,
<end> is CR followed by LF (or 13 followed by 10 in decimal).

2-18

Waveform Data Syntax

Byte Order
When the width of the data is words, the order or sequence in which the bytes are sent can
be selected using the COMM_ORDER command:
HI The most significant byte is sent first, the least significant is sent

last. This format is generally known as the Motorola format since
the most significant byte is at a lower address.

LO The least significant byte is sent first, the most significant is sent
last. The LO format is known as the Intel (or Zilog) format since
the least significant byte is at a lower address.

Definite length arbitrary block data
This format is used for sending blocks of previously fixed sizes. It is selected with the
COMM FORMAT DEF9 comand:

#9nnnnnnnnn<DB1xDB2>,.,<DBX>

where nnnnnnnnn is a decimal integer defined by nine bytes and is used to define the num-
ber of data bytes.

<DBI>,<DB2> <DBX> are 8-bit data bytes.

In this format, a block of four bytes, for example, is sent or received

as follows:

#9000000004<DBI><DB2<DB3><DB4>

This format begins with a pound sign (=#") followed by a =9", then 9 bytes (which when taken
together form a decimal integer equal to the number of 8-bit data bytes to follow), and the
four 8-bit data bytes.

If the waveform data is the last command of the message response, the command termina-
tor follows the waveform data. (The integer following =#9" does not count this terminator); oth-
erwise, it is separated from the next command or response by a semicolon.

Indefinite length arbitrary block data
This format is used to send blocks of unspecified length. It is selected with the
COMM_FORMAT IND0 command:

#0<DBI><DB2>...<DBX><end>

where <end> is a previously defined message terminator.

2-19

Waveform Data Syntax

The format begins with a pound sign (=#") followed by a ~0", 8-bit data bytes, and the mes-
sage terminator.

Note that since the number of bytes is not known and the data is binary,it would not be possi-
ble to separate it from another command or response and therefore MUSTbe followed by
<end>.

If the WF? is sent as a compound string with queries following it (i.e., T1 :WF?;T2:TRACE?),
the query error bit will be set and any queries following the WF? will be ignored. The re-
sponse message will contain any responses to queries preceding WF? followed by the re-
sponse to WF?

OFF Format
Some computer languages make it difficult to check a few bytes/characters before receiving
the remainder of a data block. Therefore, the 7200A has the =OFF" format which is an exten-
sion of IEEE Standard 488.2.

The OFF format is nearly Identical to #0 indefinite format, except that it supresses the #0,
keywords normally included in the response, and comma separators. It is selected with the
COMM_FORMAT OFF command.

When OFF format is specified, the 7200A returns a data block having the format:

<DBI><DB2>...<DBX><END>

As with the #0 format above, the OFF block must be terminated with <end>.

NOTE: When writing waveforms back to the scope, the only ac-
cepted formats are #0 and #9, and the descriptor must be sent with
the data.

Example: Given that Trace 1 consists of a 338 byte descriptor and 1000 bytes for data
array 1, if the block format is OFF, COMM_HEADER is OFF, and the 7200A is sent the
query:

T1 :WF?<end>

the 7200A response would consist of 338 bytes for the descriptor plus 1000 bytes for the
wave array:

<338 byte DESCRIPTOR><DB339><DB340>...<DB1337><DB1338><end>

which is all data. Note, however, if the header was short or long, the prefix followed by the
alias or command name, respectively, would preceed the data.

2-20

Waveform Data Syntax

To write this data back to the 7200A, precede it with the command header (’1"1 :WAVE-
FORM), its keyword (ALL), comma, and #0 pdor to transmitting the data:

T1 :WAVEFORM ALL,#0<338 byte DESCRIPTOR> <DB339>
<DB340>...<DB1337><DB1338><end>

Altematively, the #9 format may be used:

T1 :WAVEFORM ALL,#9000001338<338 byte DESCRIPTOR> <DB339> <DB340>
.... <DB1337><DB1338><end>

RS-232-C Output Format

Waveform data over GPIB can be encoded in either binary or hexadecimal (see
COMM_FORMAT command). However, over RS-232-C the data encoding must be set to
HEX.

To format the appearance of the waveform data while pdnting on an RS-232-C device, use
the COMM_RS232 command to specify the maximum number of characters per line. The
keyword, LL, followed by a # specifies the maximum line length. After the end of each line,
the designated line separator character is inserted. This character is defined by the keyword
LS in the COMM_RS232 command.

For the count in the Definite length arbitrary block data, the line separator is not counted.

Also, for block data sent to the 7200A, LS is ignored.

For example, the response to the query T1 :WAVEFORM? DAT1 can be a block of 32 bytes
of data received from the 7200A’s RS-232-C host port. It is received in definite length arbi-
trary block format in hexadecimal encoding (required for RS-232-C):

TI:WAVEFORM DAT1,#90000000321234567890123456<Line_Separator>
DC78EF87DFOC128A<Line_Separator><end>

The =#9000000032" indicates the format ("#9") and the number of bytes sent (32 bytes
cluding the LS and the <end>). Note that HEX format doubles the number of binary bytes
representing the waveform. In this example, 32 HEX bytes bytes are transferred but really
represent 16 8-bit bytes of trace 1 (i.e., "1", "2" represents 12 base 16 or 18 decimal). Note
also that the waveform preamble (T1 :WAVEFORM DAT1 ,#9000000032) is ALWAYS ASCII.
This is always true if the data encoding is HEX or BINary. Also note that the line length (LL)
is 44 characters per line. When the <end> is reached before the LL is reached, an LS is sent
before <end> is sent.

2-21

Section 3: Waveform Transfer

Waveforms can be transferred between the 7200A and an external device via GPIB, RS-232-
C, or MSDOS format 3-1/2" floppy disk. All types of transmission use the same format for the
waveform. It is therefore possible, for example, to read a waveform out of the 7200A over
GPIB, direct the output into a file on an MSDOS floppy, and then recall the waveform from
the floppy to a memory in the 7200A.

Over GPIB or RS-232-C, the WAVEFORM remote command transfers a binary waveform from
an external device into the 7200A. The WAVEFORM? query transfers a binary waveform from
the 7200A to an external device. The COMM_FORMAT and COMM_ORDER remote com-
mands select the data point format to be used by the 7200A when it produces waveforms in
response to a WAVEFORM? query. The INSPECT?. query transfers an ASCII waveform from
the 7200A to an external device.

Waveform transfer via floppy disk does not require remote programming, but may be accom-
plished with STORE and RECALL front panel operations. Remote commands
STORE_SETUP, STORE, RECALL_SETUP, and RECALL may also be used to effect the store
and recall operations if desired.

Waveform Template
Waveforms produced by the 7200A contain, in addition to the actual data points, further infor-
mation necessary to correctly interpret the data. This information includes the real time be-
tween data points, trigger offset, vertical gain and offset, acquisition time and plugin, etc. To
save space and increase the waveform transfer rate, all numerical values in the waveform are
binary.

The data and associated information are organized in a specific format described by the
waveform template. The template describes the size and location of each element in the
waveform. It may be obtained via GPIB or RS-232-C with the TEMPLATE? query. The tem-
plate is simply an ASCII file and may be examined with any text editor. See page 3-9 for a list-
ing of the 7200A waveform template. On each line of the template, text following a ; is
commentary.

In addition to providing a description of the waveform structure to users who wish to interpret
waveforms obtained from the 7200A, the template also allows waveforms to be transferred be-
tween different LeCroy instruments and different versions of the same instrument. Waveform
transferral between different LeCroy instruments may be accomplished by sending not only
the waveform, but also the template according to which it was created, to the destination
instrument. The destination instrument interprets the waveform data according to the associ-
ated template and translates it into its own format.

3-1

Waveform Template

As an alternative to using the template to interpret a waveform, the INSPECT? query may be
used to obtain a nicely formatted and labeled ASCII representation of the waveform.

As can be seen from the template on page 3-9, a 7200A waveform consists of several distinct
entities called blocks:

Waveform Descriptor Contains information necessary to correctly interpret the wave-
form data. The waveform descriptor contains two types of infor-
mation:

User Text

Sequence Trigger Times

1. Identification and description of the waveform format (name of
the associated template, length of each block present in the
waveform, etc.)
2. Information associated with the waveform data points (time per
point, vertical gain, etc.)

This optional block may contain user documentation.

This block is present only for sequence waveforms and contains
the trigger time and trigger offset for each segment of the wave-
form.

Wave Array 1

Wave Array 2

Contains the actual data points comprising the waveform

This block is present only for dual waveforms (produced by the
EXTREMA or FFTRI functions) and contains the second data ar-
ray.

Each block contains distinct elements called fields. The template gives a detailed description
of the fields comprising each block. Each field is described by a line of the form:

< offset>

where

offset

name

type

name:type ;comment

is the decimal offset in bytes of the field relative to the beginning of the block.
(The first field in a block has an offset of zero.)

is the name of the field

identifies the data format used to represent the field’s value. All numerical values
in the waveform are binary and must be interpreted according to their specified
type. The possible types are described in the comments at the beginning of the
waveform template on page 3-9.

3-2

Interpreting A Waveform

For example, refer to page 3-11 of the waveform template. The value of the vertical gain is
contained in the field named VERTICAL_GAIN, which is located 120 bytes from the start of
the waveform descriptor block and is represented as a 32-bit IEEE format single precision
floating point number.

Interpreting A Waveform
On page 3-4 is a hexadecimal/ASCII dump of an example waveform produced by the 7200A
in response to a WAVEFORM? query. The waveform descriptor block is located at the begin-
ning of the waveform and starts with the character string WAVEDESC. This is followed by the
character string name of the template which describes the waveform’s organization. For the
example waveform, the template name is LECROY_I_0".

To find the value of a field in the waveform descriptor, first find its offset and type in the tem-
plate. The offset specifies where to find the value in the waveform itself, and the type specifies
the size of the value and how to interpret it. Then retrieve the value from the waveform and in-
terpret it according to its type.

The byte order must also be known in order to correctly interpret numerical values. Two alter-
nate byte orders are possible:

most significant byte .. least significant byte (Motorola format) or,

least significant byte .. most significant byte (Intel format).

The byte order of the waveform is specified by the COMM_ORDER field in the waveform de-
scriptor. According to page 3-10 of the template, COMM_ORDER is a 16-bit value (type
enum) located at offset 34 from the start of the waveform descriptor block. Because the
waveform descriptor is the first block in the waveform, COMM_ORDER is the 16-bit value lo-
cated at offset 34 from the start of the waveform. This value is 0000(16) or 0(lO). The descrip-
tion of the COMM_ORDER field in the template indicates that value 0 is the code meaning
HIFIRST. This specifies the byte ordering of all numerical values in the waveform to be
most significant byte .. least significant byte.

Once the byte order is known, any field in the waveform descriptor can be interpreted from its
offset and type specified in the template. For example, the field NOMINAL_BITS is repre-
sented as a 16-bit value (type word) located at offset 132 from the start of the waveform de-
scriptor. The 16-bit value located at offset 132 with byte ordering most significant ... least
significant is 0008(lS). Interpreting these 16 bits as a 2’s complement signed number (as
specified by type word) yields 8.

3-3

Interpreting A Waveform

OFFSET HEXADECIMAL ASCII

300000

300016

300032

300048

000064

000080

000096

000112

000128

000144

000160

000176

000192

000208

000224

000240

D00256
D00272

D00288
000304

300320

300336

300352

300368

300384

;000400
000416

000432

000448

000464

000480

000496

000512

000528
000544

57 41 56 45 44 45 53 43 O0 O0 O0 O0 O0 O0 O0 O0

4c 45 43 52 4f 59 5f 31 5f 30 O0 O0 O0 O0 O0 O0

O00l O0 O0 O0 O00l 38 O0 O0 O0 O0 O0 O0 O0 20

O0 O0 O0 36 O0 O0 O0 O0 4C 65 43 72 6f 79 20 37

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 ic 20 54 72 61 63

65 31 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 68

O0 O0 O0 64 O0 O0 O0 O0 O0 O0 O0 67 O0 O0 O0 02

O0 O0 O0 02 O0 O0 O00l 38 80 O0 O0 O0 O0 O0 O0

7f O0 80 O0 O0 08 30 89 70 5f be 5b 79 08 ae O0

O0 O0 be 5a d7 f2 8e O0 O0 O0 56 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 53 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 40 08 3d 70 a3 d7

Oa 3d 33 09 01 01 07 c5 le ea O0 O0 O0 O0 O0 O0

O0 O0 O00b O0 O0 3f 80 O0 O0 O0 11 O0 O0 3f 80

O0 O0 O0 O0 O0 O0 O0 02 O0 01 O0 O0 O0 03 O0 O0

O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0
be 5b 79 08 ae O0 O0 O0 3f Oe 77 a9 Of 40 O0 O0

be 5b cl a7 72 O0 O0 O0 ba c2 bb d4 bb cc bb dO

bb c2 hb ce bb ca bb ce]3]3 cc bb cc ba ba bb cc

bb ca bc ba bb bc hb ca bc dO bc dO bb c8 cO Oa

c3 30 c9 c2 cf Oe d9 b8 e3 04 ef Oe f8 3c 02 16

Ob 32 15 a2 19 70 20 4a 27 2e 29 e4 2b 5c 2f 06

2f e6 2d be 2d fa 30 76 2e 50 2f 26 2e la 2f 56

2e 34 2f 3c 2e le 2f 4c 30 4a 32 36 32 72 34 9a
bc f4 bb be bc f6 hb bc bc e8 bb cc bc d6 bb bc

bc e8 bb cc bc d6 bb bc bc e8 bb cc bc d6 bc ce

bd fa bc de be e8 bf O0 c4 68 c9 86 dl f8 d9 da

e4 84 ed cc f8 ea 02 2a Ob 06 13 Oc id 94 20 26

28 04 2a b4 2c 94 2d 92 31 6e 30 22 2f 02 2f 14

2f 74 2f 5c 2f 46 2e 32 2e 36 2f 44 30 3c 30 58

32 6e 31 64 34 62 33 90

~AVEDESC

LECROY_I_0

°°°°°°°8°°°°

...6 LeCroy 7

200 DSO Trac

el h

¯..d g

°°°°°°°°8°°°.°°°

...... 0op o [y. o o

¯..Z V

o, oo* o°o oo, oo ¯ oo

.... o °o. oo ¯ , ° . , o

¯ ¯ ° ,o o. ¯ ..moo o,.

.... o oo °., , oo o ,.

o , oo o .o o oo o oo o . o

.......... 8.--p..

.-~3.. °o , ,°o . o ° . o

...... ? ?.

....... o o oo o° ooo

¯ ¯ ,o ¯ o, ¯ .oo ¯ o. o.

¯ [y ?.w..@..

. [oorooo ooo ooo,.

, o.o° o o o . o,

... o o oo ooo o oo, oo

.0°oo.oo.°o., o oo

.2...p J’.),+\/..

/. -. -. 0v.P/&.../V

¯ 4/../LOJ262r4..

. ¯ ¯ * ¯ *o * o. ¯ * ¯ o o o

.* ¯ oo °o . .** o. o .o

¯ ..o.o. * oho o.. oo

o o oo o oo*oo .,o..

¯ - .1nO"/./.¯ o ¯ ¯

It/\ IF. 2.61DOX
2nld4b3.

Figure 3.1: Hexadecimal/ASCII dump of a waveform

3-4

Interpreting A Waveform

Retrieving the data points of a waveform requires several steps:

1. Locate the start of the data In the waveform

To locate the beginning of wave array 1 in the waveform, add up the lengths of the blocks
which precede it" waveform descriptor, user text, and sequence trigger times.

Page 3-10 of the template specifies that the length in bytes of the waveform descriptor
block is contained in the field named WAVE_DESCRIPTOR, which is a 32-bit value (type
long) located at offset 36 from the start of the waveform descriptor block. For the example,
the 32-bit value located at offset 36 from the start of the waveform descriptor block
(which is the first block in the waveform) is (00000138)16, or (312)1o. Since the value of the
WAVE_DESCRIPTOR field is (312)1o, the waveform descriptor block is (312)10 bytes long.
Page 3-10 of the template specifies that the length in bytes of the user text block
is contained in the field named USER_TEXT, which is a 32-bit value located at offset
40 from the start of the waveform descriptor block. For the example waveform, the field
USER_’I--P_XT in the waveform descriptor is 0. This means that the user text is not present
in this waveform. Similarly, for the example waveform the sequence trigger time array
(TRIGTIME_ARRAY) is 32 bytes long.

For the example waveform, the data array (wave array 1) starts at offset
312 + 0 + 32 = 344 from the beginning ofthe waveform.

2. Determine the number of data points presenL

The total number of points in the data array is specified by the WAVE_ARRAY_COUNT field
in the waveform descriptor. Page 3-11 of the template indicates that this field is a 32-bit
value located at offset (92)10. For the example waveform, WAVE_ARRAY_COUNT has the
value of (00000068)16 or (104)1o.

Not every point in the data array may be valid, however. For example, if the waveform
corresponds to a horizontally repositioned trace it may be missing some points off one end.
The FIRST_VALID_PNT and LAST_VALID_PNT fields in the waveform descriptor give the
indices (starting from 0) of the first and last valid data points in the data array.
FIRST_VALID_PNT and LAST_VALID_PNT are 32-bit values located at offsets (100)1o and
(104)1o respectively. For the example waveform, FIRST_VALID PNT is 0 and
LAST_VALID_PNT is (000(X)067)16 or (103)10. Because WAVEARRAY_COUNT
(LastValid_Point - First_Valid_Point + 1), every point in the data array must be valid for
this particular waveform.

3. Determine the format or representation of each data point.

According to page 3-16 of the template, WAVE_ARRAY_I consists of an array of
measurement values or data points whose data format is described by the COMM_TYPE
field in the waveform descriptor block.

3-5

Interpreting A Waveform

1

.

The COMM_TYPE field specifies the size and type of data representation of each data
point.

Page 3-10 of the template specifies that the COMM_’I’YPE field is a 16-bit value
(type enum), located at offset 32 within the waveform descriptor. For the example
waveform, the COMM_TYPE field has the value 1. The description of the COMM_TYPE
field in the template indicates that value 1 is the code meaning word. This specifies that
each point in the data array is of type word, which is a 16-bit 2’s complement signed data
representation.

The first three (unscaled) points of the data array of the example waveform are (BAC2)16,
(BBD4)Is, and (BBCC)16 or (-17726)IO, (-17452)1o, and (-17460)Io.

Scale each data point value.

Further information in the waveform descriptor is used to correctly scale the vertical
magnitude of each point in the data array.

The units of the vertical value are given by the VERTUNIT field of the waveform descriptor,
which is an ASCII character string located at offset 154. For the example waveform, the
vertical units are V, or volts.

The vertical value Vii] of each data point i is given by the following equation:

Vii] = data[i] * VER’nCAL_GAIN- VERTICAL_OFFSET

where data[i] is the ith point in the data array, and VERTICAL_GAIN and
VERTICAL_OFFSET are fields in the waveform descriptor.

Page 3-11 of the template indicates that VERTICAL_GAIN and VERTICAL_OFFSET are
32-bit IEEE format floating point values located at offsets 120 and 124, respectively. For
the example waveform, the VERTICAL_GAIN is (38800000)16, which corresponds to the
value (6.1 E-5)1o. The VERTICAL_OFFSET Is

Determine the horizontal coordinate of each data point.

The units of the horizontal coordinate are given by the HORUNIT field of the waveform
descriptor, which is an ASCII character string located at offset 202. For the example
waveform, the horizontal units are s, or seconds.

The horizontal coordinate of each data point depends on whether or not the waveform is
a sequence waveform. This can be determined from the NOM-SUBARRAY_CNT field in
the waveform descriptor, which specifies the nominal number of segments in the waveform.
If NOM_SUBARRAY_CNT is greater than 1, the waveform is a sequence waveform.
NOM_SUB ARRAY_CNT is a 32-bit value (type long) located at offset 112. For the sample
waveform, NOM_SUBARRAY_CNT has the value 2. Thus the waveform is a sequence
waveform.

3.6

Interpreting A Waveform

5.1. Non-Sequence Waveforms

The horizontal coordinate T[i] of data point i is given by the following equation:

T[i] = i * HORIZ_INTERVAL + HORIZ_OFFSET

where i = 0..(WAVE_ARRAY_COUNT-I)

HORIZ_INTERVAL and HORIZ_OFFSET are fields in the waveform descriptor.

For time-domain waveforms, HORIZ_OFFSET is the time in seconds from the trigger to the
first data point (it may be negative) and HORIZ_INTERVAL is the time between data points,
or the sampling interval. The horizontal coordinate T[i] is thus the time relative to trigger
of data point i.

For frequency-domain or histogram waveforms, the above equation will yield the
horizontal coordinate T[i] as absolute frequency or bin location, respectively, with units
given by the HORUNIT field.

5.2. Sequence Waveforms

Sequence waveforms are composed of several consecutive segments, each of which has
its own trigger time and trigger offset. The wave array block of sequence waveforms
contains all the segments. The actual number of segments present is given by the
SUBARRAY_COUNT field in the waveform descriptor. Note that the actual number of
segments present may be less than or equal to the nominal number given by
NOM_SUBARRAY_CNT. The number of data points in each segment can be calculated
as follows:

Data points per segment = WAVE_ARRAY_COUNT/NOM_SUBARRAY_CNT.

Sequence waveforms contain a sequence trigger time block which is an array of trigger
time and trigger offset for each segment. Page 3-16 of the template describes the
sequence trigger time block. The block structure contains two fields, the TRIGGER_TIME
and the TRIGGER_OFFSET. In the waveform, these two fields are repeated for each
segment to comprise the sequence trigger time block.

For each segment, the corresponding TRIGGER_TIME field in the sequence trigger time
block contains the time in seconds between the trigger of the first segment and the trigger
of the current segment. (The time of the first trigger is given by the TRIGGER_TIME field
in the waveform descriptor). The TRIGGER_OFFSET field contains the time in seconds
from the trigger of the current segment to the first data point of the segment.

The example waveform is a sequence waveform with two segments (SUBARRAY_COUNT
equals 2). The sequence trigger time block is located after the waveform descriptor and
user text blocks, and therefore starts at offset 312+ 0= 312 from the beginning of the
waveform (where 312 is the length in bytes of the waveform descriptor block and 0 is the
length in bytes of the user text block, as determined above).

3-7

Interpreting A Waveform

The trigger time block contains two consecutive repetitions of the
{ TRIGGER_TIME,TRIGGER_OFFSET} structure. According to the template, TRIGGER_TIME
and TRIGGER_OFFSET are each 64-bit IEEE format double precision floating point values.
The TRIGGER_OFFSET of the second segment is (BE5BC1A77200A0000)16, or (-2.6E-8)1o.

The HORIZ_INTERVAL field in the waveform descriptor gives the time between data points,
or the sampling interval, which is the same for each segment.

The horizontal time coordinate Trel[i,seg] of data point i in segment seg relative to the
trigger for that segment is given by the following equation:

Trel[i,seg] = i* HORIZ._INTERVAL+ TRIGGER_OFFSET[seg]

The horizontal time coordinate Tabs[i,seg] of data point i in segment seg relative to the
first trigger is given by the following equation:

Tabs[i,seg] = Trel[i,seg] + TRIGGER_TIME[seg]

where seg = 0..(SUBARRAY_COUNT-1)
i = 0..(Data points per segment - 1)

3-8

Example Waveform Template

/00
000000 LECROY_I_0: TEMPLATE

564 130

; Descdptlon of the structure of waveforms produced by
; LeCroy Digital Oscilloscopes.

; A waveform consists of several logical data blocks whose formats are
; explained below.
; A complete waveform consists of the following blocks:
; the descriptor block WAVEDESC
; the text descdptor block USE~ (optional)
; the time array block (for sequence wavetorms only)
; data array block
; auxiliary or second data array block (for dual waveforms only)

; In the following explanation, every element of a block is described by a
; single line in the form

; < byte position> < variable name> : < vadable type> ; < comment>

; where

; < byte position> = position in bytes (decimal offset) of the variable,
; relative to the beginning of the block.

; < vadabla name> = name of the vadable.

;< vadabletype> = stdng

byte
word
long
float
double
enum

time_stamp

up to 16-character name
terminated with a null byte
8-bit signed data value
16-bit signed data value
32Jolt signed data value
32-bit IEEE floating point value
64Jolt IEEE floating point value
enumerated value in the range 0 to N
represented as a 16-bit data value.
The list of values follows immediately.
consists of the following fields:
double seconds 0.00 to 59.999999)
byte minutes (0 to 59)
byte hours (0 to 23)

3-9

Example Waveform Template

data

text
unit_definition

byte days 1 to 31)
byte months (1 to 12)
word year (0 to 16000)
word unused
(There are 16 bytes in a time field.)
byte or word, as specified by the COMM_TYPE
vadable in the WAVEDESC block
arbitrary length text stdng (maximum 400)
48 character null-terminated ASCII stdng
for the unit name.

WAVEDESC: BLOCK

; Explanation of the wave descriptor block WAVEDESC ;

< 0> DESCRIPTOR_NAME: stdng ; the first 8 chars are always WAVEDESC

< 16>

< 32>

< 34>

TEMPLATE_NAME: string

COMM_’I’YPE: enum
_0 byte
_1 word
endenum

COMM_ORDER: enum
_0 HIRRST
_1 LORRST
endenum

t

; The following variables specify the block lengths of all blocks of which
; the entire waveform (as it is currently being read) is composed.
; If a block length is zero, the block Is (currently) not present.

;BLOCKS :
p

< 36> WAVE_DESCRIPTOR: long
< 40> USER_TEXT: long
I
;ARRAYS :
t

< 44> TRIGTIME_ARRAY:Iong
e

< 48> WAVE_ARRAY_I: long
i

< 52> WAVE ARRAY_2: long

; The following variables Identify the instrument

; length In bytes of block WAVEDESC
; length in bytes of block USERTEXT

; length In bytes of TRIGTIME array

; length in bytes of 1st data array

; length in bytes of 2nd data array

3-10

Example Waveform Template

< 56> INSTRUMENT_NAME: string

< 72> INSTRUMENT_NUMBER: long

; The following variables descdbe the waveform type and the time at
; which the waveform was generated.

< 76> TRACE_LABEL: string

< 92> WAVE_ARRAY_COUNT: long

< 96> PN1S_PER_SCREBq: long

< 100> RRST_V,N.ID_PNT: long

< 104> LAST_VALID_PNT: long

< 108>

< 112>

SUB~Y_COUNT: long

NOM_SUB.N:P, AY_CNT: long

< 116> SWEEPS_PER_ACQ: long

< 120> VERTICAL_GAIN: float

< 124> VERTICAL_OFFSET: float

< 128> MAX_VALUE: word

< 130> MIN_VALUE: word

< 132> NOMINAL_BITS: word

; trace label

; actual number of points in each
; data array

; nominal number of points in each
; data array

;count of number of points to skip
; before first good point in data
; array,FIRST_VALID_POINT = 0
; for normal waveforms.

; index of last good data point
; in data array

; for sequence waveforms,actual number
; of segments in data array

; nominal number of segments in data
; array
; NOM_SUBARRAY_CNT:= 1
; for non-sequence waveforms
; for cumulative waveforms (eg.average),
; number of sweeps which contributed to
; the waveform

; to get floating values from raw data
; VE RT~AL_GAIN * data-VERTICAL_O FFS ET

; maximum allowed data value

; minimum allowed data value

; a measure of the intrinsic precision
; of the observation: ADC data is 8 bit
; averaged data is 10-12 bit, etc.

3-11

Example Waveform Template

< 134> HORIZ_INTERVAL: float

< 138> HORIZ_OFFSET: double

< 146> PIXEL_OFFSET: double

< 154>

< 202>

VERTUNIT: uniLdefinltlon

HORUNIT: uniLdeflnltlon

; sampling interval for time domain
; wavoforms

; actual trigger delay (time In seconds
; from trigger to first data point)

; nominal trigger delay selected by
; user

; units of the vertical axis

; units of the horizontal axis

; The following variables descdbe the time at which
; the waveform was generated end the waveform type

< 250>

< 266>

< 270>

< 272>

TRIGGER_TIME: time_stamp

ACQ_DURATION: float

; time of the trigger

; duration of the acquisition (in sac)
;in multi-trigger waveforms.
: (e.g. sequence or averaging)

RECORD_TYPE: enum
_0 single_sweep
_1 interleaved
_2 histogram
3 trend
_4 filter_coefficient
_5 complex_frequency_domain
_6 extrem a--envelope_display
7 sequence
endenum

PROCESSING_DONE: enum
_0 no_processing
_1 fir_filter
_2 Interpolated
-3 sparsed_wavaform
_4 autoscaled
_5 no_result
_6 roll_mode
_7 cumulative
endenum

; The following variables descdbe the basic acquisition
; conditions used when the waveform was acquired

3-12

< 274> TIMEBASE: enum
_0 l_ps/div
_1 2._ps/div
_2 5_ps/div
_3 lO_ps/div
_4 20_ps/div
_5 50_ps/div
_6 lO0_ps/div
_7 200_ps/div
_8 500_ps/div
_9 l_ns/dlv
_10 2_ns/div
_11 5_ns/div
_12 lO_ns/div
_13 20_ns/div
_14 50_ns/div
_15 lO0_ns/div
_16 200_ns/div
_17 500_ns/div
_18 l_us/div
_19 2_us/div
_20 5_us/div
_21 lO_us/div
_22 20_us/div
_23 50_us/div
_24 lO0_us/div
_25 200_us/div
_26 500_us/div
27 l_ms/div
_28 2_ms/div
_29 5_ms/div
30 lO_ms/dlv
_31 20_ms/div
_32 50_ms/div
_33 lO0_ms/div
_34 200_ms/div
_35 500_ms/div
_36 l_s/div
_37 2_s/div
_38 5_s/div
_39 lO_s/div
_40 20_s/div
_41 50_s/div
_42 lO0_s/div
_43 200_s/div
_44 500_s/div
_45 l.._k,Vdlv
_46 2_ks/div
_47 5_ks/div
endenum

Example Waveform Template

3-13

Example Waveform Template

< 276>

< 278>

< 282>

< 284>

< 286>

< 290>

< 294>

VERT_COUPLING: enum
_0 DC_50_Ohms
_1 ground
._2 DC_IMOhm
_3 ground
_4 AC,_IMOhm
endenum

PROBE_ATT: float

FIXED_VERT_GAIN: enum
_0 l_uV/div
_1 2_uV/dlv
_2 5_uV/div
_3 10_uV/div
_4 20_uV/dlv
_5 50_uV/dlv
_6 100_uV/div
_7 200_uV/div
_8 500_uV/dlv
_9 l_mV/dlv
_10 2_mV/div
_11 5_mV/div
_12 10_mV/div
_13 20_mV/dlv
_14 50_mV/div
_15 100_mV/dlv
_16 200_mV/div
_17 500 mV/dlv
_18 l_V/div
_19 2_V/div
_20 5_V/dlv
_21 lO_V/div
_22 20_V/div
_23 50_V/dlv
_24 f 00_V/div
_25 200_V/dlv
_26 500 V/div
_27 1 kV/div
endenum

BANDWIDTH_LIMIT: enum
_0 off
_1 on,-60_MHz
endenum

VERTICAL_VERNIER: float

ACQ VERT_OFFSET: float

WAVE_SRC_PLUGIN: enum

3-14

Example Waveform Template

I

< 296>

i

< 298>

i
< 300>

< 302>

w
< 304>

< 306>

< 310>

_0 UNKNOWN
_1 PLUGIN_A
_2 PLUGIN_B
_3 PLUGIN_C
_4 PLUGIN_D
_5 PLUGIN_E
_6 PLUGIN_F
endenum

WAVE_SRC_CHANNEL: enum
_0 UNKNOWN
_1 CHANNEL_I
_2 CHANNEL_2
_3 CHANNEL_3
_4 CHANNEL_4
endenum

TRIGGER_SOURCE: enum
_0 CHANNEL_I
_1 CHANNEL_2
_2 CHANNEL_3
_3 CHANNEL_4
_4 LINE
_5 EXT
_6 EXT/10
endenum

TRIGGER_COUPLING: (mum
_0 AC
_1 LF_REJ
_2 HF_REJ
_3 DC
endenum

TRIGGER_SLOPE: enum
o PosmvE
_1 NEGATIVE
endenum

SMART_TRIGGER: enum
_0 OFF
_1 ON
endenum

TRIGGER_LEVEL: float

SWEEPS_ARRAY1: long ;for alt sync avg waveforms,
;number of sweeps which contributes to
;the number in data array 1

3-15

Example Waveform Template

< 314> SWEEPS_ARRAY2: long

J
/00 ENDBLOCK
t

;for alt sync avg waveforms,
;number of sweeps which contributed to
;the waveform In data array 1

J

USERTEXT: BLOCK

; Explanation of the descriptor block USERTEXT at most 400 bytes long¯
t
< O> DESCRIPTOR_NAME: stdng; the first 8 chars are always USERTEXT

< 16> TEXT:text

/00

;=

ENDBLOCK

; this Is simply a list of ASCII
: characters

t

TRIGTIME: ARRAY
t

; Explanation of the trigger time array (present for sequence waveforms only)

0> TRIGGER_TIME: double

8> TRIGGER_OFFSET: double

/00 ENDARRAY

; time In seconds from first trigger
; to this one

; actual trigger delay time in
: seconds from this tdgger to
: first data point

t-

WAVE_ARRAY_ 1: ARRAY

< 0> MEASUREMENT: data

;/00 ENDARRAY

; the actual format of a data Is
: given in the WAVEDESC descriptor
; by variable COMM_’I’YPE

3-16

Example Waveform Template

WAVE_ARRAY_2: ARRAY

< O> MEASUREMENT: data

/00 ENDARRAY

; the actual format of a data is
; given in the WAVEDESC descriptor
; by variable COMM_TYPE

3-17

Section 4: Status Messages

This section describes the 7200A’s instrument status and event reporting functions. Although
the mechanisms for requesting service differ for GPIB and RS-232-C, status and event report-
ing is identical.

GPIB Service Request
When the 7200A reports a change in its condition, it can asynchronously request service from
the GPIB controller (e.g., the 7200A can request service when processing completes). The
7200A requests service by asserting the GPIB Service Request (SRQ) management line.
Once it has been enabled by setting the appropriate mask bits, the SRQ interrupts the control-
ler.

To identify the source of the SRQ, the controller serial polls the devices attached to the GPIB.
It reads the main Status Byte register (STB) of each device polled. To read the S’rB, the con-
troller addresses a device to talk and sends it a Serial Poll Enable bus command. In return,
the device sends its STB. The device whose S’rB has an asserted RQS bit (seventh bit) gener-
ated the SRQ.

Once the controller determines that the 7200A generated the SRQ, it will reset the SRQ line.
The 7200A will then reset its RQS bit.

RS-232-C Service Request
The RS-232-C interface does not have a line by which the 7200A can asynchronously request
service from the computer. Therefore, it must query (poll) the 7200A to read the STB register.

The computer issues the status command, *S’I’B? to query the 7200A for its STB register. The
seventh bit of the STB register (RQS bit for GPIB serial polling, MSS or Master Summary
Status bit for S’I’B) indicates that the 7200A requests service.

Status Byte Operation
The 720(0 continually updates its status to report the latest events, conditions, and settings.
Changes are summarized by designated bits in the Status Byte register (STB). The seventh
bit, RQS, is asserted whenever any other bits in the STB are reported as set and their corre-
sponding mask bits are enabled. Also, whenever the RQS bit is set, the GPIB bus SRQ line is
automatically asserted.

Typically, the controller identifies the device requesting service. It reads the other bits in the
STB register and the associated status data structure to determine the cause of, and the con-
ditions relating to the service request. For example, whenever the sixth bit (ESB) of the STB

4-1

Status Byte

register is set, an error or synchronization event has occurred. The controller then examines
the Event Status Register, a secondary status register within the status data structure, to ob-
tain details relating to that event.

Status Data Structures
In general, an asserted STB bit reflects, or summarizes, a change in a corresponding status
register. It can have an encoded number which indicates a specific event or condition. Alter-
nately, it can have each of its bits report, or summarize, a change in a third status register,
and so on.

Two types of status structures are the Register (individual bits) and the Queue (encoded num-
ber) models:

Register Model The Register Model requires that individual bits identify a specific
7200A condition or event.

Queue Model

Altemately, each bit could act as a summary bit for an associated
status register. Using bits in one status register to indicate
changes in other registers allows for a layered status description.
This layering of detail enables the controller to limit the amount of
information it receives. (Note: unless =Register Model" is specifi-
cally referenced, the term =register" refers to any byte(s) used
report a status condition or event.)

The Queue Model is a single register which contains an encoded
number. For example, this number may be an error code which
corresponds to an error condition.

The 7200A’s queue can hold one error code. When read, the
queue will report the most recent error code, and then will clear it.

When the queue is cleared (empty), the corresponding bit in the
Register Model will be cleared. Conversely, when the queue con-
tains an error code, the corresponding bit in the Register Model
will be set.

The following example illustrates the 7200A’s flexible status reporting capability. Each level
queried yields more details about the error. Query to the required extent to prevent extrane-
ous information from traversing the GPIB.

4-2

Status Byte Operation

Status Byte Register
RQS
DI07 E:

MSS O!
DI07

= 01100000 BINARY
60 HEXADECIMAL

Standard event status

ESR = 00010000 BINARY
10 HEXADECIMAL

Execution error

w w 3
~ 0 EXT = 00000001BINAR~

1 HEXADECIMAL

ERROR CODE OWR

(APPENDIX A)

4.1 Example of Status Reporting

If you sent the command A:’I’DIV 20ns to set the timebase of plug-in A to 20 nanoseconds,
but the timebase did not change, you could query the STB register using the command

4-3

Status Byte

* STB?. The 7200A would return the hexadecimal number 60 (see Figure 4.3), indicating that
the Event Status Register (ESR) changed.

Query another level deeper using * ESR?. The 7200A would return the hexadecimal number
10 for the value of the Event Status Register (ESR). This value means the Execution Error bit
was set. For more detail send EXR? to read the Execution Error Register. The response of 1
indicates that the Operator Warning bit is set.

Progressing one more step, send OWR? to query the Operator Warning Register. Since this
"register" is a queue, the 7200A sends back an error code. Referencing this byte in Appendix
A would reveal that a "data out of bounds" error occurred, since plug-in A’s timebase cannot
go below 50 nanoseconds.

Event Recording
IEEE-488.2 allows two ways to record an event:

Condition Registers Condition Registers are updated continually and are not cleared
when read. The 7200A has no condition registers.

Event Registers Event Registers capture changes in conditions. They are not
cleared until they are read, even if the condition which caused
the event no longer exists. Each bit in an Event Register either
summarizes a Condition Register, or reports a condition or event
in the 7200A.

NOTE" The *CLS command is provided to clear all Event
Registers without reading them firsL (The output queue
(and its MAVsummary bit) is treated as a Condition Reg-
ister. It is not cleared by the *CLS command.)

NOTE" Only changes in bits can propagate to the main
status register. Therefore, the *CLS command should
be used before monitoring any register. Otherwise, if the
bit was previously set, setting it again will have no effect
on the main status byte.

4-4

Status Byte Operation

Event Enable Registers
Event enable registers also permit the controller to limit the amount of status information it re-
ceives. Every Register Model status register has an associated event enable register. By ma-
nipulating the associated event enable register, the controller can selectively enable or
suppress (mask) the reporting of specific instrument events. Each bit in an event enable regis-
ter is =AND’ed" with its corresponding bit in the status register. For example, if the controller
sets a bit in the Event Enable register, the corresponding status event can be reported. If it is
cleared, the event is masked and its reporting is disabled. In order for a service request to be
sent for an event, the corresponding bit in the event enable register, as well as all the bits
above it, must be set in order to propagate the bit up to the main status byte. For example, if
bit 0 in the * STB register gets set because a trigger got done and its corresponding event en-
able bit (bit 0) was set in the * SRE register, then the MSS bit will be set. If bit 0 was pre-
viously 0, then because it changed to a 1, the RQS bit (bit 6) will be set in the serial poll
register (along with bit 0) and the 7200A will generate an SRQ interrupt to the host computer.
If the computer performs a serial poll, the 7200A will reset bit 6 after sending its serial poll reg-
ister to the host computer. However, the *S’FB register remains unaffected by this and willl
still contain decimal 65 (bits 0 and 6 set). Unless the INR register is cleared by reading it
sending * CLS, future trigger completions will not generate an SRQ because the previous
state was latched into the INR event register.

If a condition exists such that a bit is set in the *STB register but its corresponding bit in the
¯ SRE event enable register was not set, then the MSS bit and RQS bit will be 0 and no SRQ is
generated. However, performing a serial poll will show the bit to be set in the serial poll regis-
ter. If the event enable bit in the * SRE register then gets set, the unmasked bit set in the
¯ STB register will then set the MSS bit and the RQS bit and generate a service request (SRQ)
to the host computer.

In Figure 4.2, when the OWFI queue has an error code, the OWR bit is set in the EXR status
register.

The OWR bit has a corresponding bit set in the EXR event enable register. Since it is set, the
event is reported to the * ESR register. However, this event is not reported to the * STB status
register because the corresponding bit in the * ESR event enable register is cleared. Since all
other bits are cleared in the * ESR register, the ESB bit in the *STB register is also cleared.
Since no bits are set in the *STB, the MSS bit in the *STB is also cleared which causes the
RQS bit in the serial poll register to be 0 and no SRQ is generated by the 7200A.

When the 7200A is powered on, all masks are cleared; that is, all status event reporting is dis-
abled.

4-5

Status Byte

o
o
o

~1o
.arO

0
0

I [*SRE

read by *STB

STATUS BYTE

read by sedal poll

0
0
0
0
0
0
0

Io

Standard Event Status Enable

IIIIIIIII’EsE

 !!lll
IIII

TTT
I Ill I’ESR
Standard Event Status

OPERATOR WARNINGS

OWR ERROR CODE [
I

Queue
Not Empty

Execution Error

IJllllll

 JJJ& & &

J Jllol 1,1,1,1
Execution Error Enable

’EXR

*EXE

Figure 4.2 Event Enable

4.6

Naming Convention

Naming Convention
The status registers follow a basic form which can be expressed as =xxR" (i.e., ESR, INR,
DPR, ...). Reference to the individual bits within the status register follow the form =xxB"
(i.e., ESB, INB, DPB). Reference to the mask used to enable or disable certain bits within
each register follow the form =xxE" (i.e., ESE, INE, DPE). The enable register may be set
pass or block the occurrence of certain events using the general form =xxE n" where n is the
value to set the enable register. For example, ESE 128 enables the PON bit in the ESR and
blocks the other bits. Only registers and masks may be queried according to the general
form =xxR?’. ’ and =xxE?". The following table summarizes these general forms:

xxB = Status xx Bit
xxR = Status xx Register
xxE = Status xx Enable mask
xxx? = Status xxx Query
xxE n = Set Status Enable mask xxE to value n

All the status bytes in the 7200A conform to either the register model or the queue model as
required by IEEE-488.2. If an event occurs which causes a bit in a register model to change
(either from a 0 to 1 or a 1 to 0), that change will be propagated to any overlaying registers,
provided the enable mask is set to pass that change. For example, the bits within the ESR
register are summarized by the ESB bit in the main status byte register (STB). If a bit in the
ESR register changes and the ESE mask is set to pass that change, then the ESB bit in the
main status register will be set or reset to reflect the change in the ESR.

If an event occurs which causes a byte to accumulate in a queue model, then the change will
propagate to any overlaying registers. For example, the CMR is summarized by the CMB bit
in the ESFL If a byte is placed in the CMR queue, the CMB bit will be set to indicate that the
queue is not empty. If the ESE mask is set to pass the change in the CMR, then the ESB bit in
the main status register will be set.

IEEE-488.2 defines certain =Common Commands", some of which are required for compli-
ance to the standard. All IEEE-488.2 Common Commands are three letter names preceded
by an asterisk(*). For example, * RST, * IDN?

4-7

Status Byte

STB Standard Definition
This section describes the function and structure of all the status registers. The main Status
Byte register (STB) reflects instrument status at the time it is read. This register is usually read
when the system controller polls the 7200A. Bits in the STB summarize all the other status reg-
isters. This summary occurs by "OFring" all the reported bits in a summarized register. If the
result is TRUE, the summary bit is set. Those registers which the STB summarizes can, in
turn, summarize other registers in the same way.

The STB is read with the command * STB?. Its event enable register, or mask, is set with
¯ SRE n. The mask is read with *SRE?. (Note: n is the sum of the decimal bit weights of all bits
that are true.)

The * STB? query does not alter any bits in the status byte. Only the * CLS command can
clear the status byte, except for the MAV Message Available bit which depends on the state
of the Output queue. STB is shown in Figure 4.3.

4-8

STB Standard Definition

RQS Status Byte Reglster

7 DIG7

[:)108 ,.l,,v o:I01
MSS

DI06 DI05 DI04 DI03 DI01

D107

¯ Program . VAII|A At~nt~t

I

STB
Ann done for Plug-in -~ ~ Tdg done for Plug-ln

,I I I J [I i=kl,..
Data p~ssln!

Running

Message available

--.~ OUTPUT QUEUE I

Standard event status

~ ol m

done

I

Commend error
3MR [ERFIOR CODE]. I

Processing done for traces

.~-~:~-~-~-~ WPR

Calibmtlon done for plug-ln

Max sweeps done for trace

"~- ~ ~- ~-- ~- ~-- ~-- ~ MSR

Query error

Device dependent register

II]II I r~l~l°°~
I Mainframe hardware fallum

=~ >, ~ -

Rug-in A hardware error

___~ I I = I’o I -o I -o I -o I -o I
I INI~I~I~I~I~I

Plug-in B hardware error

J I I :, I’o I -o I ~ I -o I -o I
--] I I~1~1~1,~1~1~1

Execution error

Fatal error
t I I I I~lm_.~O[ooIEXR

Operatorwamlng

Internal error Operator error

EMR

EAR

EBR

Figure 4.3: 7200A Status Byte Definition

4-9

Status Byte

Bit 0:

Bit # Associated Status Byte Significance

7 (MSB) none Program Running
6 none RQS (service request) Bit
5 ESR Standard Event Status Bit
4 MAV Message Available bit
3 none Reserved
2 none Value Adapted Bit
1 DPR Data Processing Bit
0 (LSB) INn Internal State Change Bit

INB - Internal State Change Bit
If the INB is set, a plug-in(s) has received a trigger(s). * For Protected Mode operation, other
INB bits indicate when a plug-in(s) has bean armed.

The INB is a summary of the Internal State Register (INn). INn identifies the plug-in(s) which
has received a trigger(s). Since the INn is an event register, any bits stay set until the register
is read. After it is read, all the bits are cleared. Once cleared, its summary bit, INB, in the
STB is also cleared.

INn’s event enable register, or mask, is INE. To set the INE use INE n, and to read it use INE?
The command used to read the INn is INFI?.

BIT # Associated Status Byte

3 none
2 none
1 none
0 none

* for Protected Mode Operation only

Bit 1: DPB - Data Processing Bit

Sl_onlflcance

* Plug-in B armed
*Plug-in A armed
Trigger done for plug-in B
Trigger done for plug-in A

If the DPB is set, an internal software processing event(s) has completed. The DPB bit sum-
marizes the Data Processing event Register (DPR). DPR identifies which internal software
processing event(s) has completed.

Since the DPR is an Event Register, any set bits stay set until the register is read. After it is
read, all the bits are cleared. Once cleared, its summary bit, DPB, in the STB is also cleared.

Before waiting for an event in the DPR register, be sure the desired DPR bits are first cleared.
Otherwise, a previous event may be read.

DPR’s event enable register, or mask, is DPE. To set the DPE use DPE n, and to read it use
DPE?

4-10

STB Standard Definition

The command to read the DPR is DPR?.

BIT # Associated Status Byte

9 none
8 none
7 none
6 none
5 none
4 none
3 MSR
2 CAR
1 WPR
0 none

Sianlficance

Replay Traces Done
Record Traces Done
Self-test Done
Recall Done
Store Done
Auto Setup Completed
Maximum Sweeps Reached
Calibration Completed
Waveform Processing Completed
Hardcopy Completed

Note: Bit # 4, Auto Setup Completed, is set when all the plug-ins
have been automatically setup. Bit # 1, Waveform Processing Com-
pleted, is a summary bit #1at is set as soon as processing is com-
pleted. It is cleared when the WPR register is read.

MSR If the MSB bit (bit # 3 in the DPR) is set, a trace has reached its
maximum number of sweeps. The MSR identifies the trace(s) for
which the maximum sweeps has been reached. This applies to
Summation Averaging, Histograms, Extrema, and any other rou-
tines which require a history to be accumulated.

MSR is an Event Register and gets cleared after it is read. MSR’s event enable register, or
mask, is MSE. To set the MSE use MSE n, and to read it use MSE?. The command to read
the MSR is MSR?.

BIT # Associated Status Byte Significance

7 none Max Sweeps reached for Trace 8
6 none Max Sweeps reached for Trace 7
5 none Max Sweeps reached for Trace 6
4 none Max Sweeps reached for Trace 5
3 none Max Sweeps reached for Trace 4
2 none Max Sweeps reached for Trace 3
1 none Max Sweeps reached for Trace 2
0 none Max Sweeps reached for Trace 1

4-11

Status Byte

CAR If the CAB bit (bit # 2 in the DPR) is set, a plug-in(s) has
pleted calibration. The CAB bit is a summary of the Calibration
event register (CAR). CAR identifies which plug-in has completed
calibration.

CAR is an Event Register and gets cleared after it is read. CAR’s event enable register, or
mask, is CAE. To set the CAE use CAE n, and to read it use CAE?. The command to read the
CAR is CAR?.

BIT # .~oclatad Status Byte

I none
0 none

Sl_anlflcan_,~_

Calibration Done for plug-in B
Calibration Done for plug-in A

WPR If the WPB bit (bit # 1 in the DPR) is set, a waveform processing
event has occurred. The WPB is a summary of the Waveform
Processing Register (WPR). WPR identifies the trace(s) for which
processing has completed. For history functions (Average, Histo-
gram, Extrema,...) this event may correspond to a partial result.
That is, the waveform processing done bit is set when a trace can
be displayed. For history functions, traces can be displayed be-
fore the maximum sweeps have accumulated.

WPR is an Event Register that gets cleared after it is read. WPR’s event enable register, or
mask, is WPE. To set the WPE use WPE n, and to read it use WPE?. The command to read
the WPR is WPR?.

BIT # Assoclatad Stat-~ Byte

7 no ne Wavefo r m
6 none Waveform
5 none Waveform
4 none Waveform
3 none Waveform
2 none Waveform
1 none Waveform
0 none Waveform

Slonlflcance

:~rocessing for Trace 8 done
3rocessing for Trace 7 done
3rocessing for Trace 6 done
3rocessing for Trace 5 done
3rocessing for Trace 4 done
3rocessing for Trace 3 done
~rocessing for Trace 2 done
3rocessing for Trace 1 done

Bit 2: Value Adapted Bit
The Value Adapted Bit is set to 1 if a received numerical argument was altered before being
used in a computation. For example,the 7200A receives "AI:TDIV 1 lns". Since the timebase

4.12

STB Standard Definition

can only be set in multiples of 1,2, and 5, the 11 ns would get rounded to 10ns. The Value
Adapted bit would be set to report that the received value was altered.

Bit 4: MAV- Message Available Bit
MAV is set if data is in the output queue. It informs the system controller that there is still data
to output. It is reset once the output queue is empty, indicating that the system controller has
read the data from the 7200A. This condition bit is not set or reset when the system controller
reads STB. Also, the *CLS command does not affect this bit.

Bit 5: ESB - Event Status Bit
If the ESB is set, an error(s) or user front panel request(s) has occurred. The ESB is a
mary of the Event Status Register (* ESR). IEEE-488.2 defines the * ESR to report error condi-
tions common to most automatic test equipment. The 7200A uses most but not all of these
bits for synchronization and error reporting.

The * ESR identifies the type of error or whether a front panel request has occurred. Since the
¯ ESR is an Event Register, any set bits stay set until the register is read. After it is read, all the
bits are cleared. Once cleared, its summary bit (ESB) in the STB is also cleared.

¯ ESR’s event enable register, or mask, is * ESE. To set the * ESE use * ESE n, and to read it
use * ESE?. The command to read the * ESR is * ESR?..

The definition of the bits in the * ESR follow:

BIT # Associated Status Byte

7 none
6 none
5 CMR
4 EXR
3 DDR
2 QYR
1 none
0 none

Sionlflcance

Power On
User Request(Local Hardcopy Request)
Command Error (syntax,unknown, cmd,...)
Execution Error (invalid parameter,...)
Device Dependent Error (CAL error,...)
Query Error
Request Control
Operation Complete

This event bit indicates that an off-to-on transition has occurred
in the 7200A’s power supply.

URQ The User Request bit is set when the Remote Host port and Hard-
copy ports are both set to GPIB and the front panel Hardcopy
button is pressed. In this case, if the Hardcopy were to start, the
7200A would enter Talk-Only mode and disrupt the connected
Remote Host. To prevent this, the User Request bit is set allowing
the Remote Host to detect the Hardcopy request and initiate it re-

4-13

Status Byte

CMR

EXR

BIT #

DDR

motely after first setting up all connected devices. Refer to Sec-
tion 1 for more information.

If the CMB (Bit # 5 in the ESR) is set, a command parsing error
has occurred. The CMB bit summarizes the Command Parsing
Register(CMR). The CMR identifies the most recent command
parser error. The CMR is a 16-bit queue which contains a unique
encoded value. Refer to Appendix A: Command Errors, for a list-
ing of possible command errors.

If the ~ (Bit # 4 in the ESR) is set, a command execution er-
ror(s) has occurred. The EXB bit summarizes the Command Exe-
cution register (EXR). The EXR identifies the category
command execution errors. Each of four bits in the EXR corre-
sponds to a different category of error/warning condition. A bit is
set when its category of error occurs. A 16-bit queue for each
category contains the most recent code.

Status Byte

FER
IER
OER
OWR

Slaniflcance

Fatal Error
Internal Error
Operator Error
Operator Warning

Typical errors include:
prefix illegal
too many parameters
plug-in not present
data block error
data block descriptor error
data processing error
units do not match

If the DDB (Bit # 3 in the ESR) is set, a device specific error(s)
has occurred. The DDB bit summarizes the Device Dependent
Register (DDR). The DDR specifies the origin of the failure (plug-
in(s) and/or mainframe). Each bit in the DDR is a summary mes-
sage bit for a status register corresponding to each plug-in and
for the mainframe. The DDR is an event register that gets cleared
when read.

4-]4

STB Standard Definition

DDR’s event enable register, or mask, is DDE. To set the DDE use DDE n, and to read it use
DDE?. The command to read the DDR is DDR?.

BIT # Associated Status Byte Si_onificance
2 EBR Plug-in B error
1 EAR Plug-in A error
0 EMR Mainframe error

ExRBits These bits indicate the type of device specific error. Each plug-in
and mainframe bit in the DDR summarizes an ExR register. The
system controller can read these registers to determine the type
of error which occurred in the plug-in or mainframe. The defini-
tion of the bits in the ExR for all the plug-ins are the same.

The x in ExR represents M,and A and B for mainframe and plug-ins, respectively.

ExR’s event enable register, or mask, is ExE. To set the ExE use ExE n, and to read it use
ExE?. The command to read the ExR is ExR?.

Typical device specific errors include channel overloads, hardware failures, and self-test fail-
ures. This is an event register and gets cleared after it is read.

Bit assignments for ExR, for the plugin:

BIT # Associated Status Byte Slanlflcance

5 none Calibration Failed
4 none External overload
3 none Channel 4 overload
2 none Channel 3 overload
1 none Channel 2 overload
0 none Channel 1 overload

Bit assignments for EMP~

BIT # Associated Status Byte Si_oniflcance

7 none reserved
6 none reserved
5 none System clock failure
4 none I/O failure
3 none Hard disk failure
2 none Floppy failure
1 none Display failure
0 none Internal comm. failure

4-15

Status Byte

QYR

RQC

OPC

If the QYB (Bit #2 of ESR) is set, a query error(s) has occurred.
The QYB bit summarizes the Query Error Register (QYR). QYR
identifies the most recent query error. The QYR is a 16-bit queue
which contains a unique encoded value. The value indicates
query errors. Typical errors include:

Query CHANNEL ALL when both channels are not equal.
Buffer deadlock: input and output buffers full.
Unterminated: controller reads before sending a complete
query message.
Interrupted: controller sends new command before reading
last query.
Query after indefinite response.

The Request Control bit in the ESR is never set because the
7200A does not have controller capability.

To conform to IEEE-488.2, the 7200A will set the OPC bit (Bit #
in the ESR) in response to an *OPC command. The query
* OPC? will return a "1".

This bit is set upon completion of any operation. At any one time,
several operations can be performed and be in various states of
completion. To correctly determine which operation completed,
monitor the Internal State Register (INR) and the Data Processing
Register (DPR).

Bit 6: RQS - Request Service Bit
The RQS bit is a summary bit for the other bits in the STB byte. For GPIB, an SRQ interrupt is
generated when the RQS bit is set if the corresponding bit in the SRE mask is set. For
RS-232-C, the computer must poll the STB register and read the FIQS bit to determine the
most recent status.

Bit 7: Program Running Bit
This bit is set when an ICL Program (See Section 7) is executing and is reset when the ICL
Program has completed execution.

NOTE" When an ICL Program is running, remote commands are
locked out. Therefore, bit 7 of the main status byte should always be
checked (using a serial poll) before sending remote commands
ensure proper remote operation.

4.16

Mainframe Remote Comnmnds

Section 5: Mainframe Remote Commands

Acquisition Commands
"TRG 5-179
*TST? 5-180
AFWI_ACQUISmON ARM 5-7
AUTOSETUP ASET 5-9
REFERENCE_CLOCK RCLK 5-131
STOP 5-137
TIMEBASE._LOCK TBLK 5-143
TRIG_ENABLE TREN 5-150
TRIG_LOCK TRLK 5-151
TRIG_MODE TI:~ID 5-152
WAIT 5.156
ALL_STATUS? ALST? 5-6
AF~I_ACQUISmON AFWl 5-7
AUTO_CAL ACAL 5-8
AUTO_SETUP ASET 5-9
AXIS_LABEL AX]L 5-10
BUZZER BUZZ 5.11
CAE 5.12

Calibration and Test Commands
*CAL? 5-168
*FIST 5-176
AUTO_CAL ACAL 5-8
CAR 5-13
CENT 5-14
CENTER_MAX CMAX 5-16
CLEAR_DISPLAY CLRD 5-17
CLEAR_MEMORIES CLRM 5-18
CMR 5-19
COLOR COLR 5-20
COMM_FORMAT CFMF 5-22
COMM_HEADER CHDR 5-24
COMM_ORDER CORD 5-25
COMM_RS232 CORS 5-26
COMM_SCSI COSC 5-28

Communication Commands
*WAI 5-181
CENT 5-14
COMM_FORMAT CFMT 5-22
COMM_HEADER CHDR 5-24
COMM_ORDER CORD 5-25
COMM_RS232 CORS 5-26

COMM_SCSI COSC 5-28
DATA_DEST DDST 5.36
GPIB_ADDRESS GPAD 5-66
LOCAL LOC 5-84
LOCKOUT LLOK 5-85
REM CTRL RCTL 5-133
REMOTE REM 5-132
SCSI_ID? SCID? 5-135
TFIANSFER_RLE TRR 5-148
COPY_RLE COPY 5-29
CURSOR LOCK CRLK 5--30

Cursor Meaeursmant Commands
CURSORLOCK CRLK 5-30
CURSOR_MEASURE CI:~IS 5-31
CURSOR_SET CRST 5-32
CURSOR_VALUE? CRVA? 5-34
PARAMETER_ADD PAAD 5-92
PARAMETER_AVG PAAV 5-103
PARAMETER_CLR PACL 5-104
PARAMETER_DEL PADL 5-105
PARAMETER_VALUE? PAVA 5-106
PER_CURSOR_SET PECS 5-108
PER_CURSOR_VALUE PECV 5-110
XY_CURSOR_ORIGIN XYCO 5-162
XY_CURSOR_SET XYCS 5-163
XY_C URSOR_VALUE XYCV 5-165
CURSOR_MEASURE CF~S ,5-31
CURSOR_SET CRST 5-32
CURSOR_VALUE? CRVA? 5-34
DATA_DEST DDST 5-36
DATE 5-37
DDE 5-38
DDR 5-39
DEFINE DEF 5-40
DERNE_REPLAY DEFR 5-48
DELETE_RLE DELF 5-49
DIRECTORY_LIST DIR 5-50

Display Commands
AXIS_LABEL AX]L 5-10
BUZZER BUZZ 5-11
COLOR COLR 5-20
DISPLAY DISP 5-51

5-1

Mainframe Remote Commands

Mainframe Remote Commands (continued)

DISPLAY_UPDATE DISU 5-52
DOT_JOIN DTJN 5-53
GRID_STYLE GRDS 5-68
HIST_ORIENT HISO 5-75
HOR_MAGNIFY HMAG 5-76
HOR_POSITION HPOS 5-77
INTENSITY INTS 5-83
MULTI_ZOOM MZOM 5-88
MULTI_ZOOM_SETUP MZSU 5-89
PERSIST PERS 5-112
PERSIST_SETUP PESU 5-113
RECALLPANELS RCPN 5-127
SELECT SEL 5-136
STORE_PANELS STPN 5-139
TRACE TRA 5-144
TRACE_ANOT TRAA 5-145
VERT_IVlAGNIFY VlVlAG 5-154
VERT_POSITION VPOS 5-155
XY_A,SSIG N XYAS 5-161
XY_DISPLAY XYDS 5-167
DISPLAY DISP 5-51
DISPLAY_UPDATE DISU 5-52
DOT_JOIN DTJN 5-53
DPE 5-54
DPR 5-55
EAE, EBE 5-57
EAR?, EBR? 5-58
EME 5-59
EMR 5-60
EXE 5-61
EXR 5-62
FER? 5-63
FIND_CTR_RANGE FCR 5-64
FORMA’rr_FLOPPY FFLP 5-65
GPIB_ADDRESS GPAD 5-66
GRID 5-67
GRID_STYLE GRDS 5-68

Hardcopy Commands
HARDCOPY HCPY 5-69
HARDCOPY_SETUP HCSU 5-70
HARDCOPY_TRANS HCTR 5-74
HARDCOPY HCPY 5-69
HARDCOPY_SETUP HCSU 5-70

HARDCOPY_TRANS HCTR 5-74
HIST_ORIENT HISO 5-75
Histogram Paramaters 5-100
HOR_MAGNIFY HMAG 5-76
HOR_POSmON 5-77

Identification/Data Commands
*IDN? 5-172
"OPT? 5-175
DATE 5-37
PRW ON STATE PWRO 5-124
UPTIME UPTI 5-153
IER? 5-78
INE 5-79
INR? 5-80
INSPECT? 5-81
INTENSITY 5-83
LOCAL 5-84
LOCKOUT 5.85
MSE 5-86
MSR 587
MULTI_ZOOM MZOM 588
MULTI_ZOOM_SETUP MZSU 589
OER? 5-90
OWR? 5-91
PARAMETER_ADD PAAD 5-92
PARAMETER_AVG PAAV 5-103
PARAMETER CLR PACL 5-104
PARAMETER_DEL PADL 5-105
PARAMETER_VALUE? PAVA? 5-106
PER CURSOR_SET PECS 5-108
PER_CURSOR VALUE? PECV? 5-110
PERSIST PERS 5-112
PERSIST_SETUP PESU 5-113
PROG_ARG PRAR 5-114
PROG_CLEAR PRCL 5-115
PROG_COMPILE PRCO 5-116
PROG_LIST PRLI 5-117
PROG_MODE PRMO 5-118
PROG_RECALL PRRC 5-119
PROG_SETUP PRSU 5-120
PROG_STORE PRST 5-122

5-2

Mainframe Remote Commands

Mainframe Remote Commands (continued)

Program Commands
*LRN? 5-173
PROG_ARG PRAR 5-114
PROG_CLEAR PRCL 5-115
PROG_COM PILE PRCO 5-116
PROG_LIST PFLI 5-117
PROG_MODE PRMO 5-118
PROG_RECALL PRRC 5-119
PROG_SETUP PRSU 5-120
PROG_STORE PRST 5-122
PROTECT_MODE PF~ID ($I Option only) 5-123
PRW_ON_STATE PWRO ($I Option only) 5-124
QYR? 5-125
RECALL REC 5.126
RECALL_PANELS ROPN 5.127
RECALL_SETUP RCST 5.128
RECORD_TRACES RECT 5.130
REFERENCE_CLOCK RCLK 5-131
REM_CTRL RCTL 5-133
REMOTE REM 5-132
REPLAY_TRACES REPT 5-134
SCSI_ID? SCID? 5-135
SELECT SEL 5-136

Status Register Commands
*CLS 5-169
* ESE 5-170
*ESR? 5-171
*OPC 5-174
*SRE 5-177
*STB? 5-178
ALL_STATUS? ALS’T’? 5-6
CAE 5-12
CAR?. 5.13
CMR? 5.19
DDE 5-38
DDR? 5-39
DPE 5-54
DPR? 5.55
EAE, EBE 5-57
EAR?, EBR? 5-58
EME 5-59
EMR? 5-60
EXE 5-61

EXR? 5-62

FER? 5.-63
IER? 5-78
INE 5-79
INR?. 5-80
MSE 5-86
MSR? 5-87
OER? 5-90
OWR? 5-91
QYR? 5-125
WPE 5.159
WPR? 5.160
STOP 5-137
STORE STO 5-138
STORE_PANELS STPN 5-139
STORE_SETUP STST 5.140
TEMPLATE? TMPL? 5.142
TIMEBASE_LOCK TBLK 5.143

Trace Equation Setup
CENTER_MAX CMAX 5-16
CLEAR_DISPLAY CLRD 5-17
DEFINE DEF 5-40
DEFINE_REPLAY DEFR 5-48
RND_CTR_RANGE FCR 5-.64
TRACE_LABEL TRLB 5-147
TRACE TRA 5.144
TRACE_ANAT TRAA 5.145
TRACE_LABEL TRLB 5-147
TRANSFER_FILE TRR 5-148
TRIG_ENABLE TREN ($1 Option only)... 5-150
TRIG_LOCK TRLK 5-151
TRIG_MODE TFWlD 5.152
UPTIME UPTI 5.153
VERT MAGNIFY VMAG 5-154
VERT_POSITION VPOS 5-155
WAIT 5.156

Waveform Storage
CLEAR_MEMORIES CLI:~ 5-18
COPY_RLE COPY 5.29
DELETE_FILE DELF 549
DIRECTORY_LIST DIR 5-50
FOF~IAT_FLOPPY FFLP 5-65

5-3

Mainframe Remote Commands

Mainframe Remote Commands(continued)

PROTECT_MODE PFWlD 5-123
RECALL REC 5-126
RECALL_SETUP RCST 5-128
RECORD_TRACES RECT 5-130
REPLAY_TRACES PEP1" 5-134
STORE STO 5-138
STORE_SETUP STST 5-140

Waveform Tran=fer Commands
INSPECT INSP 5-81
TEMPLATE TMPL? 5-142
WAVEFOF~I WF 5-157
WAVEFOFWI? WF? 5-158
WAVEFO FIM WF 5-157
WAVEFOF~? WF? 5-158
WPE 5-159
WPR? 5-160
XY ASSIGN XYAS 5-161
XY_CURSOR_ORIGIN XYCO 5-162
XY_CURSOR_SET XYCS 5-163
XY_C URSOFLVALUE? XYCV? 5-165
XY_DISPLAY XYDS 5-167

Mainframe Remote Commands

Organization
Each command description begins a new page. A command’s name (header) is printed
long and short form near the top of the page. Although the long form is used in the descrip-
tion, the short form can be used instead. Below the header are up to eight sections which de-
scribe it:

Purpose: explains a command’s use
Command: contains a command’s syntax
Query: contains the query syntax
Response: contains the syntax of the response to a query
Argument: defines a choice(s)
Example: includes the command being used
Note: reports additional considerations
See Also: cites other relevant commands

Command Execution
Execution of program messages depends on the instrument status. As a rule, commands and
queries can be executed in either Local or Remote mode.

Before attempting to execute a command or query, the parser scans it to verify its correct-
ness and that sufficient information is given to perform a requested action.

5-5

Mainframe Remote Commands

ALL_STATUS? ALST?

Purpose:

Query.

Response:

Argument:

Examples:

See Also:

Reads the contents of all status registers. After event registers are read,
they are cleared. For an interpretation of each register’s contents, refer to
the appropriate status register description.

The ALST? query is useful for a complete overview of the instrument’s state.

ALL_STATUS?

ALL_STATUS register,value,register,value

register Indicates the register mnemonic.
value Indicates register contents.

ALL_STATUS? Read the contents of all status registers.
ALL_STATUS * S’rB,0,* ESR,0,CMR,0,EXR,0,FER,0,1ER,0,OER,0,
OWR,0,DDR, O,EBR, O, EAR,0, EM R,0,QYR,O,
DPR,0,MSR,0,CAR,0,WPR,0,1NR,0 < end>

The query commands for each of these status registers.

5-6

ARM_ACQUISITION

Mainframe Remote Commands

ARM

Purpose:

Command:

Note:

See Also:

Enables the signal acquisition process by changing the acquisition state
from TRIGGERED to READY.

ARM_ACQUISITION

This command works identically as the *TRG command.

*TI:~

5-7

Mainframe Remote Commands

AUTO_CAI,

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

To enable or disable automatic calibration of 7200A plugins.

AUTO_CAL state

AUTO CAL?

AUTO_CAL state

state ON

OFF

ACAL ON

ACAL?

ACAL ON

ACAIJ

Causes the 7200A to periodically perform an automatic
recalibration of the plugins.
Disables automatic recalibration of plugins.

enables automatic calibration.

Queries whether automatic calibration is enabled
or disabled.

Reports than automatic calibration is enabled.

Automatic caUbration is always enabled when the 7200A is powered on or
reset.

I/Vhen controlling the 7200A from remote, it is recommended that automat-
ic calibrations are disabled, since they will occur asynchronously and can
take several seconds per plug-in to complete. However, if you do disable
it, periodic calibrations should be performed via the *CAL ? command.

* CAL?

5-8

Mainframe Remote Commands

AUTO_SETUP ASET

Purpose:

Command:

Notes:

Sets up acquisition parameters automatically. The command attempts to
display the input signal(s) by adjusting the vertical, timebase, and trigger
parameters. If input signals are available and more than one channel is be-
ing displayed, the signals will be scaled vertically and the timebase will be
chosen to best display Channel 1. If only one input channel is turned on,
the timebase will be adjusted for that channel.

AUTO_SETUP

When locked timebase is selected, the Umebase controls will be set up
based on the leftmost plugin’s control settings.

5-9

Mainframe Remote Commands

AXIS_LABEL AXIL
Purpose:

Command:

Query:.

Response:

Arguments:

Example:

See Also:

This command enable/disables the display of the end point values for the
active trace on both the horizontal and vertical axes. If enabled, the values
are printed when the grid is either single or dual.

AXIS_LABEL state

AXIS_LABEL?

AXIS_LABEL state

state ON

OFF

AXIL ON

AXIL?
AXIL OFF

SELECT

displays the values corresponding to the active trace at
the end of each axis.

takes the values of the axes off the display.

tells the 7200A to display the axis values.

asks if the axis lables are on or off.
response indicates axis labels are not displayed.

5-10

Mainframe Remote Commands

BUZZER BUZZ

Purpose:

Command:

Briefly sounds the buzzer.

BUZZER

5-11

Mainframe Remote Commands

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Sets the Calibration Enable register (CAE). The CAE register determines
which events in the Calibration status Register (CAR) are reported. CAR
identifies which plug-in has completed calibration. Any reported CAR event
sets the CAB summary message bit (bit # 2) of the Data Processing Regis-
ter (DPR) and propagates to the main Status Byte (STB).

CAE mask

CAE?

CAE mask

mask When expressed in binary, this number (between 0 and 63)
represents the bits of the CAR that can be reported:

CAE 3

CAE?
CAE 3

Bit #
1
0

Associated Sianificarl(;e
Calibration Done for plug-in B
Calibration Done for plug-in A

enables the events represented by the lower two bits of this
event register (i.e., calibration done for plug-ins A and B).
bit 1 (decimal 2), and bit 0 (decimal 1). Summing the decimal
values yields 3.

Read the contents of the CAE.
Response indicates the contents as 3, i.e., the lower two
enable bits are set.

CAR?.

5.12

CAR?

Mainframe Remote Commands

Purpose:

Query:.

Response:

Argument

Examples:

See Also:

Reads and then clears the Calibration event Register (CAR) which identifies
which plug-in has completed calibration.

Clearing the CAR register also clears the CAB summary message bit
(bit # 2) of the Data Processing Register (DPR) and the effect could propa-
gate to the main Status Byte (STB).

CAR?

CAR value

value When expressed in binary, this number (between 0 and 63)
represents the bits of the CAR:

Bit #
1
0

Associated Significance
Calibration Done for plug-in B
Calibration Done for plug-in A

CAR?
CAR 2

Read and clear the CAR register contents.
Response indicates that calibration done for plug-in B.

ALL_STATUS, CAE, * STB?

5-13

Mainframe Remote Commands

CENT

Purpose:

Command:

Query.

Response:

Arguments:

Reads and writes the centronics port for synchronization and control of ex-
ternal events. The command and query can be used in a variety of ways
such as limit testing and external triggering. Since the 8 outputs provide
standard -I-n_ levels, they can be used to initiate some external action while
the 7200A is left monitoring (babysitting) an input signal.

CENT value

CENT?

CENT value

value The actual data to be written to or read from the centronics port.
When writing, value may be specified in decimal, hexadecimal
(# H), octal (# Q), or binary (#

When writing the centronics port, the actual pins which correspond to the
data value are as follows:

Data Bit DB25-D .Din 36-Din bali lock
DO 2 2
D1 3 3
D2 4 4
D3 5 5
D4 6 6
D5 7 7
D6 8 8
137 9 9

5-14

Mainframe Remote Commands

CENT (continued)

Examples:

Note:

When reading the centronics port using CENT?., the data value returned is
bit-encoded as follows:

Data Bit DB25-D pin 36-pin bail lock Centronics bail lock
Signal Name

DO 10 10 ACKNOWLEDGE
D1 11 11 BUSY
D2 12 12 PAPER OUT
D3 13 13 SELECT
D4 15 32 ERROR

CENT 8 Sets pin 5 high on the DB25-D Centronics parallel
output connector; pins 2,3,4,6 through 9 are set low.

CENT # Bl1001010 Sets pins 3,5,8 and 9 high and pins 2,4,6 and 7 are
set low on the DB25-D connector.

CENT?
CENT21 Response indicates that pins 10,12, and 15 are pulled

high and pins 11 and 13 are pulled low on the DB25-D
connector (decimal 21 = 00010101 in binary)

The CENT command is not intended to drive a printer since the normal
data transfer sequence is not carried out.

Data written to the DB25-D connector remains latched on pins 2 through 9
until another byte overwrites it.

All voltages appearing on pins 2 through 9 are based on TTL levels and are
driven by a continuously enabled bus transceiver. When interfacing exter-
nal devices, please refer to the appropriate data sheet to avoid overloading.

The CENT?. query allows external hardware signals to be read remotely. If
there is no connection to these input pins, they are considered to be float-
ing and the query response may return random data. If only some input
pins are used, then the appropriate data bits should be isolated from the
query response.

5-15

Mainframe Remote Commands

CENTER MAX

Purpose:

Command:

Arguments: prefix

Examples: T3:CMAX

See Also:

CMAX

Automatically moves the center of a histogram to the mode of the currently
accumilated histogram.

prefix:CENTER_MAX

The prefix is limited to traces T1, "I"2 T8

Automatically moves the center of the histogram defined in trace
3 to the mode of the current histogram.

FIN D_CTR_RANGE

5-16

Mainframe Remote Commands

CLEAR_DISPLAY CLRD

Purpose:

Command:

Note:

See Also:

Reset the data associated with the history function(s) as applicable
(e.g., Average, Extrema, etc.) and also clears the persistence display.

CLEAR_DISPLAY

When this command is received, all data generated by the history functions
(Average, Extrema, Histogram, and Trend) is set to zero and the count(s)
of the number of sweeps is set to zero. Also, if persistence is on, the dis-
play is cleared and its sweep count is reset to zero. If no history function is
being used and persistence is not on, this command has no effect.

DEFINE, DEFINE_REPLAY, PERSIST

5-17

Mainframe Remote Commands

CLEAR_MEMORIES CLRM
Purpose: Clears the eight memories M1 M8 and the record traces buffer.

Command: Clear_Memories

5-18

Mainframe Remote Commands

CMR?

Purpose:

Query.

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Command error Register (CMR).
The CMR register identifies the most recent command parser error. A com-
mand error is reported whenever the 7200A detects a syntax error or is un-
able to parse the command or query.

The CMR is a single-value queue which contains a unique encoded value.
The value corresponds to the most recent command error. An encoded
value is assigned to every error message that can appear on the screen.
Values are also assigned to remote specific errors. A listing of all encoded
values with their meanings is found in Appendix A.

Clearing the CMR register also clears the CMB summary message bit
(bit # 5) of the standard Event Status Register (ESR) and the effect could
propagate to the main Status Byte (STB).

CMR?

CM R value

value Corresponds to an error. Typical errors include:
Header error
String error
Keyword error
Number error
Suffix error
Prefix illegal
Too many parameters
EOI detected during definite length data block
transfer

CMR?
CMR 453

Read and clear the CMR.
Response indicates unknown remote command.

ALST?, * CLS, * S’T’B?

5-19

Mainframe Remote Commands

COLOR COLR
Purpose:

Command:

Query:.

Response:

Argument:

Example:

Determines the color assignments for the different display entities as well
as how many color should be used to display the traces.

COLOR keyword, value [,keyword, value]

COLOR?

COLOR keyword, value, keyword, value, keyword, value

An argument consists of a keyword followed by its value. Any number of ar-
guments, in any order may be used.

Kevword Meanina: Value

TRACES Selects how many different colors should be used to
display the traces. Choices are 1 (all traces the same color),
2 (the active trace one color, all other traces a second
color), and 8 (each trace is a different color).

SCHEME Selects the color scheme to use. The color scheme is a
file (in the panel setup directory with a ".COL" extension
for color systems and =.MOW’ for monochrome systems)
that contains a list of the color assignments for each possible
display entity. The file DEFAULT.COL contains a description
of each of the fields.

CONTRAST Selects the difference in intensity of the dark, medium,
and bright colors of each hue. Bright colors are used
for highlighting entries which you can change in setup
screens and for acquired points in expanded waveforms.
The contrast is a percentage ranging from 5, in which
there is very little difference in intensities, to 95, where
all but the bright colors are nearly black.

COLR SCHEME, DEFAULT, TRACES, 8
Sets the color scheme according to the file =DEFAULT" and
specifies that a different color should be used for each trace.

COLR? requests the current color settings

5-~0

Mainframe Remote Commands

COLOR (continued) COLR

Note:

See Also:

COLR SCHEME, PRIMARY, TRACES, 2, CONTRAST, 30
reports that the color scheme is currently determined by
the file "PRIMARY" and that only the active trace is a
different color, and the contrast is 30.

For the 7200A with the color option, the ICL program, COLOR, can be used
to generate your own customized color scheme.

INTENSITY

5-21

Mainframe Remote Commands

COMM_FORMAT CFMT

Purpose:

Command:

Query:.

Response:

Arguments:

Determines the format which the 7200A will use to send waveform data.
The available options set: (1) the data block format, (2) the data word size,
and (3) the data encoding to be modified from the default settings

COMMFORMAT format, data_width, encoding

COMM_FORMAT?

COMM_FOFWlAT format, data_width, encoding

format, choice of data block format:

DEF9 definite length, has the block format :
#9nnnnnnnnn< DBI> < DB2> ...< DBn>

INDO indefinite length, has the block format:
#0< DBI> < DB2> ...< DBn> < end>

OFF has the block format:
< DBI> < DB2> ...< DBn> < end>

where nnnnnnnnn is a decimal integer defined by nine bytes
and indicates the number of data bytes. < DBn> represents
a data byte and < end> is the message terminator.

datajidth, choice of:
BYTE 1 byte
WORD 2 bytes

encoding, choice of:
BINary
HEXadecimal

the most compact, provides the fastest transfer
two ASCII characters, 0" through 9" and
A through F, represent the contents of each
data byte. The first character represents the
four most significant bits.

5-22

Mainframe Remote Commands

COMM_FORMAT (continued) CFMT

Examples:

Note:

See Also:

CFMT DEF9,WORD,BIN Sets the format to # 9 definite length block,
with 16 bit data words in binary encoding.

CFMT?
CFMT IND0,BYTE, HEX

Requests the current format settings
Reports the data block is indefinite length
format, with 8 bit data words in hexadecimal
encoding.

RS-232-C requires HEX encoding, GPIB can use either.

Waveform data points result from 8-bit ADCs so that a data_width of BYTE
can fully describe each point. Selecting a data_width of WORD simply
places the BYTE in the upper half of a 16-bit WORD and clears the lower
half.

The format set by this command only affects the WAVEFORM command.

The format OFF is an extension to the IEEE-488.2 standard and is provided
for special applications where the absolute minimum of data transfer may
be important. It suppresses any keywords normally included in the re-
sponse, and comma separators.

WAVEFORM

5-2,3

Mainframe Remote Commands

COMM_HEADER CI-IDR

Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Note:

Specifies which type of ASCII header, if any, should be sent with a re-
sponse to a query. The response header can have three forms:

LONG:
SHORT:
OFF:

Full command name followed by its argument(s),
Abbreviation of the command followed by its argument(s),
Just the argument(s) with no command name.

COMM_HEADER arg

COMM_HEADER?

COMM_HEADER arg

arg, choice of :
OFF (no header),
SHORT (abbreviated command name),
LONG (full command name)

CHDR SHORT Tells the 7200A to start responses with the
abbreviated command names.

CHDR? Requests the current header type.
COMM_HEADER LONG Reports the current header type as LONG.

If the 7200A received T1 :VPOS?, it would respond with:

T1 :VERT POSITION 1.0
T1 :VPOS 1.0
1.0

if CHDR LONG
if CHDR SHORT
if CHDR OFF

COMM_HEADER only affects the response header. Long or short forms
can always be used for sending commands to the 7200A. Arguments are
not affected.

.$-24

Mainframe Remote Commands

COMM_ORDER CORD
Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

Specifies the order of bytes for two byte data words. High byte (most sig-
nificant byte) first is generally known as Motorola format. Low byte (least
significant) first is called Intel format and is also used by an IBM PC or com-
patible.

COMM_ORDER arg

COMM_ORDER?

COMM_ORDER arg

arg choice of HI or LO

CORD LO Causes the least significant byte of a two byte data word to be
sent first. (This is how it should be set when reading into an
IBM PC or compatible.)

CORD?
CORD HI

Requests the current order in which bytes are sent.
Indicates Motorola format

COMM_ORDER only applies to block data in the WAVEFORM command.

WAVEFOF~I

5-25

Mainframe Remote Commands

COMM_RS232 CORS
Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Defines the RS-232-C message exchange protocol.

COMM_RS232 keyword,value, keyword,value,...,keyword,value

Initially selected valu0

13

\An

OFF

COMM_RS2327

COMM_RS232 keyword,value,keyword,value

keyword Meaning: values

El End_In terminates command messages:
1 through 127

EO End_out terminates response messages:
Alphanumeric string of no more than two
characters

LS Line_separator: CR, LF, CRLF, or OFF

LL Une_length, for LS not OFF:
40 through 1024 1024

EC Echo determines if received characters are sent back OFF

BR Baud Rate: 19200, 9600, 4800, 2400, 2000, 1800, 1200, 1050, 600,
300,200, 150, and 110

SB Stop Bits: 1 or 2

PR Parity: NONE, ODD, or EVEN

DB Data Bits: 5, 6, 7, or 8

HS Handshake method: HARDWlRE, XON-XOFF

An argument consists of a keyword followed by its value. Any number of
arguments may be used in any order to change individual settings.

CORS EC,OFF,LL,80 Selects echo off and a line length of 80.

5-26

Mainframe Remote Commands

COMM_RS232 (continued) CORS

Note:

See Also:

CORS? Query, which has no parameters, requests the state
of all settings.

CORS BR,9600,SB,1 ,PR, NONE,DB,8,HS,XON-XOFF,EI,13,EO,~ r\ n",
LL,1024,LS,OFF, EC,OFF

The keywords have the following meanings:

Echo
(EC)

Determines if received characters are sent back to the remote
host. ON indicates FULL duplex mode, OFF indicates HALF
duplex mode.

End_in
(El)

Terminates the command message sent to the 7200A.
Be sure to use a value that is not included in the message
itself, otherwise the 7200A will interpret it as the terminator.

End_Out
(EO)

Terminates the response message sent from the 7200A. One
or two characters are used to represent the string. Unix-like
notation is used to represent control characters. For example,
\ r~ n is used to mean CR (decimal 13) followed by
(decimal 10)

Line_Separator
(LS)

Terminates a line of response, particularly useful for
formatting a printout of block data. If OFF is selected,
Line_Separator is not used.

Line_Length
(EL)

Sets the maximum number of characters per line. If the
Line_Separator occurs before the Line_Length is
reached, the line is terminated.

Whenever the Line_Separator character(s) is encountered, the count for
the number of characters on a line is reset. Whenever the count exceeds
Line_Length, the Line_Separator is transmitted before the current charac-
ter.

Block Data, Command Syntax, WAVEFOFWI

5-27

Mainframe Remote Commands

COMM_SCSI COSC

Purpose: Sets or determines the SCSI id and block size to be used in transfers of
non-corrected acquisition data.

Command:

Query:.

COSC keyword, value[,keyword,value]

COSC? keyword[,keyword]

Response:

Arguments:

COSC keyword,value[,keyword,value]

ID: Specifies the SCSI id of the device to which the acquired data are
to be sent. Choices are 0 to 7, excepting the SCSI id of the 7200A
itself.

Example:

BS: Specifies the number of bytes in each block to be transferred.
The last block may be smaller than the specifies block size,
depending on the amount of data acquired. The block size can
range from 4 to 65536 in increments of 2.

COSC ID, 6, BS, 2048 Sets ID= 6, block size= 2k

COSC?
COSC ID,6, BS, 2048

Requests the current settings
Returns current settings

5-28

Mainframe Remote Commands

COPY_FILE COPY

Purpose:

Command:

Argument:

Copies the specified file(s) from the internal disk to the floppy or vice versa.

COPY_FILE keyword,value

The argument consists of a keyword followed by its value.

Keyword

INPN

Meaning: Value

Panel settings file on the internal disk to be copied
to the floppy disk.

=filename.ext" filename including extension
or =ALL FILES"

INAS Program file on the internal disk to be copied to
the floppy disk.

=filename.ext" filename including extension
or =ALL FILES"

FLPY Panel settings or program file on the floppy disk to
be copied to the appropriate directory on the
internal disk.

"filename.ext" fllename including extension
or =ALL FILES"

Examples:

See Also:

COPY FLPY, "MIKE.PNL"

COPY INAS, "ALL FILES"

DIRECTORY_LIST, DELETEFILE

Copy the panel settings file MIKE.PNL
from the floppy to the internal disk.

Copy all program files from the internal
disk to the floppy disk

5-29

Mainframe Remote Commands

CURSOR LOCK CRLK

Purpose: Allows you to choose to have independent parameter cursors for each
trace or have all the cursors locked together so that they are on the same
place on all the traces.

Command:

Query:

CURSOR_LOCK argument

CURSOR_LOCK?

Response: CURSOR_LOCK argument

Arguments:

Example:

Notes:

The argument specifies whether to turn CURSOR_LOCK on or off:
ON Provides one parameter cursor for all of the traces.
OFF Provides an independent parameter cursor for each trace.

CURSOR_LOCK ON Selects one parameter cursor for all of the traces.

CURSOR_LOCK? Returns the current status of of CURSOR_LOCK.

CURSOR_LOCK OFF Indicates cursor parameters may be set
independently for each trace.

When using Histogram, you may want the cursors for all traces to be inde-
pendent of each other. The reason for this is that if the cursors were locked
and you moved the cursors on the histogram, you may also be moving the
cursors on the trace which is providing the input to the histogram and will
therefore cause the histogram to be reset.

See Also: CURSOR_SET, PARAMETER_VALUE

5-30

Mainframe Remote Commands

CURSOR MEASURE CRMS

Purpose:

Command:

Quer~

Response:

Argument:

Examples:

Note:

See Also:

Displays the specified cursor type if the cursors are not already on.

CURSOR_MEASURE keyword

CURSOR_MEASURE?

CURSOR_MEASURE keyword

kevword
VREL Vertical

Relative

meaning
Measures the difference between the vertical
positions of two cursors.

VABS Vertical
Absolute

Measures the absolute vertical value at a given point.

HABS Marker Measures the absolute horizontal position and its
vertical value of a point on a trace(s).

HREL Horizontal Measures the difference between the horizontal
positions and the corresponding vertical values
of two Horizontal cursors.

PARAM Basic Calculates a fixed set of waveform parameters on
Parameter one trace between two cursors.

EXPAR Extended Calculates up to 20 user selected parameters that
can be defined on any combination of traces.

OFF Display no cursors.

CRMS?
CRMS VREL

Requests which cursors are currently displayed.
Reports that only the Vertical cursors are being displayed.

This command affects the display of cursors, it does not affect the
positioning of cursors (see CURSOR_SET) or their measurement
(see CURSOR_VALUE).

CURSOR_SET, CURSOR_VALUE, PARAMETERVALUE,
XY_CURSOR_SET, XY_CURSOR_VALUE, PER_CURSOR_SET,
PER_CURSOR_VALUE

5-31

~inframe Remote Commands

CURSOR_SET CRST

Purpose:

Command:

Query:.

Response:

Arguments:

Positions any one of the eight independent cursors at a given screen loca-
tion when not in XY or persistence mode. Cursor positions are specified
relative to a grid. The positions of the cursors can be modified or queried
even if the required cursor is not currently displayed on the screen.

prefix:CURSOR SET keyword,position,...,keyword,positlon

prefix:CURSOR_SET? keyword,keyword,keyword,...

prefix:CURSOR_SET keyword,position keyword,position

prefix The prefix is limited to traces, i.e., T1, T2 T8.

keyword,position keyword, position

Cursor T.voe keyword position

Vertical Absolute VABS -4 to 4 DIV
Vertical Relative VREF, VDIF -4 to 4 DIV
Marker HABS 0 to 10 DIV, or Horizontal units
Horizontal HREF, HDIF 0 to 10 DIV
Basic PREF, PDIF 0 to 10 DIV
Extended PREF, PDIF 0 to 10 DIV
Unlocked UREF, UDIF 0 to 10 DIV

The seven cursor types measure the following:

Verticial Absolute measures the absolute vertical value at a given point.

Vertical Relative measures the difference between vertical positions of
the cursors of a trace(s).

Marker measures the absolute horizontal position and its
vertical value of a point on a trace(s).

Horizontal measures the difference between the horizontal
positions and their corresponding vertical values of
two Horizontal cursors

Basic calculates a fixed set of waveform parameters on one
trace between two cursors

5-32

Mainframe Remote Commands

CURSOR_SET (continued) CRST

Examples:

Note:

See Also:

Extended calculates up to 20 user selected waveform parameters that
can be defined on any combination of traces.

Unlocked Same as basic & Extended cursors but can be positioned
individually on each trace

T1 :CRST HABS, 5 Races the marker in the center of the waveform.

T1 :CRST? HREF

"1"1 :CRST HREF, 2

Requests the position of the horizontal reference
cursor on trace 1
The response indicates the position is two divisions
to the right of the grid’s left edge.

Keywords ending in REF refer to a reference cursor which is a line of alter-
nating dots and dashes. Keywords ending in DIF correspond to the
difference cursor which contains dashes.

When positioning VREF and VDIF cursors and when the 7200A is display-
ing more than one grid, the specified position is interpreted as the number
of divisions above or below the center of the grid on which the trace is
currently displayed.

A command argument has two parts: keyword followed by position. Any
number of arguments may be used in any order to change individual
settings.

If no arguments are specified with the query, all cursor positions are re-
turned.

When querying the position, if the cursor is not on the specified trace, the
value UNDEF is returned.

CURSOR_MEASURE, CURSOR_VALUE, PARAMETER_VALUE,
PER_CURSOR_SET, XY_CURSOR_SET

5-33

Mainframe Remote Commands

CURSOR_VAI UE? CRVA?

Purpose:

Query.

Response:

Arguments:

Examples:

Notes:

Returns the values of the specified cursor measurement(s) for a given trace
when not in XY or persistence mode. The corresponding units accompany
each reported value.

prefix:CURSOR_VALUE? keyword,keyword,...,keyword

prefix:CURSOR_VALUE keyword,value,value,keywo rd,value

prefix The prefix is limited to traces, i.e., T1, T2 T8.

keyword keyword

keyword
VABS Vertical

Absolute
VREL Vertical

Relative
HABS Marker

HREL Horizontal

meaning
measures the absolute vertical value at a given point

measures the difference between the vertical
positions of two cursors
measures the absolute horizontal position and its
vertical value of a point on a trace(s).
measures the difference between the horizontal
positions and their corresponding vertical values
of two horizontal cursors

value indicates the cursor measurement results with the correct units.

T1 :CRVA? HREL Requests the horizontal and vertical
difference(s) between the co-ordinates
of the two Horizontal cursors

T1 :CRVA HREL,21.3 MS, 5.1 DB

T1 :CRVA? VABS

"11 :CFIVA VABS, -24 mV

Requests the measurement for the
Vertical absolute cursor position.

If no keywords are specified, the values of all measurements are returned.

For Marker and Horizontal cursors, two values, vertical and horizontal, are
returned. For vertical and marker cursors, one value is returned.

5-34

Mainframe Remote Commands

CURSOR_VAI UE? (continued) CRVA?

See Also:

If the trace has multiple arrays, such as, EXTREMA or a Complex FFT, the
marker and horizontal cursors return a second vertical value.

Any number of cursor types can be specified in the argument. Their cursor
names followed by the value(s) and units are returned in the same order
requested.

To measure a cursor value, its cursor type need not be selected by the
CURSOR_MEASURE command. Use PARAMETER_VALUE? to read Basic
and Extended cursor parameter values.

If the cursor is not on the specified trace or the trace is not valid, the value
UNDEF is returned.

CURSOR_MEASURE, CURSOR_SET, PARAMETER_VALUE?
PER_CURSOR_VALUE, XY_CURSOR_VALUE

5-35

Mainframe Remote Commands

DATA_DEST (Available for Option F2 Only) DDST

Purpose:

Command:

Query.

Response:

Arguments:

Examples:

See also:

Selects the destination for data from all of the plugins when sequence
mode is active.

DATA_DEST value

DATA_DEST?

DATA_DEST value

value STANDARD When in sequence mode,
segments are collected in the plugin, processed and displayed
locally.

SCSI When sequence mode is active, the data acquired
is not accessible to the 7200A for any internal processing
or display; it merely passes through from the plugin to the SCSI port.
Therefore, the display of all traces is automatically disabled and no
computational processes can be applied to the data.

DATA_DEST SCSl sets the data destination for sequence
mode to the SCSI port.

DATA_DEST? Queries the current sequence mode
data destination

DATA_DEST STANDARD Indicates that sequence mode data
will be processed and displayed locally,

SCSI_ID, COMM_SCSI, TRIG_MODE

5-36

Mainframe Remote Commands

DATE

Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Sets the date and time of the 7200A’s internal real time clock.

DATE day,month,year,hour,minute,second

DATE?

DATE day,month,year,hour,minute,second

day
month

year
hour
minute
second

1 through 31
First three letters of the month’s name: JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
Valid years: from 1989 through 2050.
24-hour notation: 0 (midnight) through 23 (11 p.m.).
0 through 59
0 through 59

DATE 27,JUL,1989,10,12,32
Changes the date to July 27, 1989 and the time to
10:12:32 in the morning.

DATE?

DATE 12,AUG,1989,16,10,59

Query returns the date and time in the same
format used to set the date and time.
Returns the current day, month, year, hour,
minute, and second.

5-37

Mainframe Remote Commands

DDE

Purpose:

Command:

Query:.

Response:

Argument:

Sets the Device Dependent Error enable register (DDE). The DDE register
determines which events in the Device Dependent Register (DDR) are re-
ported. DDR identifies the plug-in which caused the device specific error. A
mainframe error is also reported in the DDR. Any reported DDR event sets
the DDB summary message bit (bit # 3) of the standard Event Status Regis-
ter (ESR) and propagates to the main Status Byte (STB).

DDE mask

DDE?

DDE mask

mask When expressed in binary, this number (between 0 and 127)
represents the bits of the DDR that can be reported:

Bit # Sioniflcance
2 Rug-in B error
1 Rug-in A error
0 Mainframe error

Examples:

See Also:

DDE 7 Enables the events represented by the lower three bits of this
event register (i.e., mainframe error and plug-ins A, and B)
Set bit 2 (decimal 4), bit 1 (decimal 2),
bit 0 (decimal 1). Summing the decimal values yields

DDE?
DDE 7

Read the contents of the DDE.
Response indicates the contents as 7, i.e., the lower three
enable bits are set.

EME, EAE, EBE

S-38

Mainframe Remote Commands

DDR?

Purpose:

Query.

Response:

Argument:

Reads and then clears the contents of the Device Dependent Register
(DDR). In the case of a hardware fault, the DDR register specifies the origin
of the fault (plug-in(s) and/or mainframe).

Each bit in the DDR is a summary message bit for a status register corre-
sponding to each plug-in and for the mainframe. The DDR will not clear a
bit if its corresponding register is not cleared.

Clearing the DDR register also clears the DDB summary message bit
(bit # 3) of the standard Event Status Register (ESR) and the effect could
propagate to the main Status Byte (STB).

DDR?

DDR value

value When expressed in binary, this number (between 0 and 127)
represents the bits of the DDFL

The status bytes that each DDR bit summarizes and the bit’s assignment
follow:

Bit # Associated Status Byte Significance
2 EBR Plug-in B error
1 EAR Plug-in A error
0 EMR Mainframe error

Example

See Also:

DDR?
DDR 3

Read and clear DDR register contents.
Response indicates that mainframe and plug-in A errors
are reported.

ALST?., DDE, EAR?., EBR?., EMR?, * STB?

5-39

Mainframe Remote Commands

DEFINE

Purpose:

Command:

Query..

Response:

Arguments:

DEF

Defines a trace equation, which specifies the source(s) of data and how it
processed.

prefix: DEFINE keyword,velue...,keyword,value

prefix: DEFINE?

prefix: DEFINE keyword,value...,keyword,value

prefix The prefix for this command is limited to traces, i.e., T1, T2 T8.

One or more of the following keywords may be sent, in any order, with each fol-
lowed immediately by its value:

keyword aDolies to

EQN all

MAXPTS all

SWEEPS AVGS
EXTREMA

REJECT AVGS

WEIGHT AVGC

RES ERES

FFTIM,FFTMAG,
FFTPHA, FFTPWD
FFTPWS,FFTRE,

WINDOW

meaning:value

the right side of the equation
for the trace, in double quotes
the maximum number of points
to produce in the trace:
50,100,200,500,1000,2000,5000,
10000,20000,50000
the maximum number of sweeps
to accumulate:
10,20,50,100,200,500,1000...1000000
turns artifact reject (rejection of
waveforms with undedlows or overflows):
ON or OFF
weighting factor:
2,4,8,16,32,64,128,256
nominal number of effective bits
after enhancement:
8.0,8.5,9.0,9.5,... 11.0
the FFT window type:
VON_HANN,HAMMING
BLKMN_HARRIS,
RECTANGULAR, FLAT_TOP,
EXPONENTIAL

5-40

Mainframe Remote Commands

DEFINE (continued) DEF
keyword
DCSUP

MAXBINS

PARAM

MAX_EVENTS

CENTER

WIDTH

WIDTH

HEIGHT

HEIGHT

VERT

applies to
FFTIM,FFTMAG,
FFTPHA,FFTPWD
FFTPWS,FFTRE

HIST

HIST, TREND

HIST

HIST, TREND

HIST

LIMIT

TREND

LIMIT

HIS

meaning;value
turns DC suppression (removal of DC
mean of input waveform before
application of FFT):
ON or OFF
the number of bins in the histogram:
20,50,100,200,500,1000,2000
the parameter of the source
waveform whose value is to be
histogrammed or trended
The available parameters are listed
in the description of the PAAD
command on pp. 5-74
Arguments to parameters are
specified as for PAAD.
the maximum number of parameter
value events to accumulate in the
histogram:
20,50,100,200,500,1000,_2000000000
midpoint of the range of values of
a histogram or trend:
-1E30 to 1E30
horizontal scale per division of a
histogram i.e. 1/10 of the total
histogram width):
1E-30 to 500E30
The amount of flattening in the horizontal
direction, specified in divisions.
vertical scale per division of a trend
i.e, 118 of the total range of values
trended):
1E-30 to 500E30
The amount of flattening in the vertical
direction, specified in divisions.
vertical scaling of a histogram:

5-41

Mainframe Remote Commands

DEFINE (continued) DEF

HORIZ TREND

EVENTS_PER_WFHIST
TREND

HORIZ TREND

EVENTS_PER_W1= HIST
TREND

SLOPE TOFPC,
TOFAN

COUPLING TOFPC

THRESHOLD TOFPC

GAIN TOFAN,
TOFPC

OFFSET TOFAN,
TOFPC

SPACING WINHIST

LIN,LOG,MAX
horizontal scaling of a trend:
EVENTS, 1,2,5,10,20,50,...5000
numerical values specify time per division
the number of parameter values
which are accumulated in a histogram
or trend for each source waveform sweep
FIRST, ALL,AVERAGE

horizontal scaling of a trend:
EVENTS, 1,2,5,1020,50,...5000
numerical values pecify time per division
the number of parameter values
which are accumulated in a histogram
or trend for each source waveform sweep
FIRST, ALL, AVERAGE

Specifies whether rising or falling edges are used
to compute peak times. Choices are POS and NEG.

indicates the method of applying the Threshold
for locating edges. Choices are AC and DC.

Indicates the value for computing the time of an
edge. The value is expressed in the vertical units
of the input waveform. If Coupling is DC, the
Threshold is an absolute value. If Coupling is AC,
the Threshold is relative to the baseline of the
input:-1E30 to 1E30.

used to define the mass axis:-1E30 to 1E30.

used to define the mass axis:-1E30 to 1E30.

distance from the center of one window to the
center of the next window in the horizontal units of
the input waveform: 1E30 to 1E30

$.42

Mainframe Remote Commands

DEFINE (continued) DEF

Examples:

The default equations for the eight traces use the DEFINE (continued)first
eight input channels
starting with those in plug-in slot A. If less than eight channels are avail-
able, the list will repeat. For example, if there are two plug-ins, A and B,
with three channels each, the equations will be the following:

TI= A1 T2= A2 T3= A3 T4= B1
-rs= B2 T6= B3 T7= A1 liB= A2

T4:DEFINE EQN, DIFF((30MV*A1 + 5) * 1"3), MAXPTS,20000
Set trace 4 equal to the time derivative of the product of T3 and A1 times 30
MV plus 5

TS:DEFINE EQN, HIST(T2),PARAM,sdev
Set trace 5 equal to the histogram of trace 2, with the standard deviation
pulse parameter.

T1 :DEF? Query the trace equation for trace 1.
1"1 :DEF EQN, AI", MAXPTS,50000

See below for more sample equations.)

Equation Syntax
The trace equation must exactly follow the syntactic guidelines. The
relevent terms and guidelines follow.

source a channel, trace, or memory number: T1 through T8, M1
through M8, A1, B3, C4, etc. To prevent recursive
definitions, only traces with a lower number than that in
the prefix may be used as a source. Trace 8 (T8) cannot
be used as a source. A source and its constants act as
one operand as described below.

multiplicative
constant

the coefficient of a source, with or without units. Default is
1 constant having no units. The coefficient may be a
decimal number, and may be expressed as an
exponential number.

5.43

Mainframe Remote Commands

DEFINE (continued) DEF

If the units have operators in them, such as mV/s, they
should be enclosed in single quotes. Simple units, such
as mS may appear without quotes.

If units are not specified, the multiplicative constant should be followed by
the multiplication sign. If the multiplicative constant is 1, but units are used,
a constant of 1 must be entered. If both the multiplicative constant and
units are trivial, they and the multiplication sign should be left out.

additive
constant

a number (with no units) added to a source. The constant
may be negative. The default is O. If the additive constant
is zero, then it and the plus or minus sign should be
left out.

Sources used more than once can have different constants for each usage.
If a source has nontrivial constants, the multiplicative constant (and its unit,
if any) should precede the source, and the additive constant should follow
it.

If both constants and the units are trivial, the source should be entered by
name alone.

function one of the following mathematical operators:

/
1/
ABS
AVGC
AVGMAG
AVGPWS
AVGPWD
AVGS
DIFF
ERES
EXP
EXP10
EXTREMA

sum of two waveforms
difference of two waveforms
product of two waveforms
quotient of two waveforms
reciprocal (multiplicative inverse)
absolute value
continuous average **
average of linear FFT magnitude **
average of log FFT power spectrum **
average of log FFT power spectrum density **
summed average **
differentiation *
enhanced resolution **
exponent (base e)
exponent (base 10)
extrema *

5-44

Mainframe Remote Commands

DEFINE (continued) DEF

FFTIM
FF’rMAG
FFTPHA
FFTPWD
FFTPWS
FFTRE
FFTRI
FLOOR
HIST
INTG
LIMIT

LOG
LOG10
NEG
ROOF
SIGN
SINX
SMTH1
SMTH3
SMTH5
SMTH7
SMTH9
SQR
SQRT
TOFAN
TOFPC
TREND
WlNHIST

FFT imaginary part **
linear FFT magnitude **
FFT phase
log FFT power spectrum density **
log FFT power spectrum **
FFT real part **
FFT real and imaginary part **
floor (lower part of an extrema waveform)
histogram* *
integration *
generates an EXTREMA waveform for use in
GO-NO-GO testing
logarithm (base e)
logarithm (base 10)
negate (additive inverse)
roof (upper part) of an extrema waveform
sign function (-1,0, or + 1)
10-to-1 sin(x)/x interpolation
single-point smoothing (average of bin)
three-point smoothing *
five-point smoothing *
seven-point smoothing *
nine-point smoothing *
square
square root *
"13me of Flight - Analog**
"13me of Flight - Pulse count**
trend**
Window Histogram**

*The remote representations for differentiation, integration, and square root
do not use the same non-ASCII characters as the display.

5-45

Mainframe Remote Commands

DEFINE (continued) DEF

One equation can use no more than two functions, excluding those associ-
ated with constants. When a special function (indicated by **) is used in
equation, only one function is allowed.

operand that which a function operates upon.
Examples:

in AI+ B2, both A1 and B2 are operands of +
in NEG(T4), T4 is the operand of NEG
in A1 / (B4*’r3), both A1 and (B4*T3)
are operands

binary function a function with two operands: +, -, *,/.

unary function a function with one operand: all from the above list of
functions, except the binary functions. Each unary

function is followed immediately by a left parenthesis,
its operand,and then a right parenthesis.

special function functions in the above list marked with **
The parameter list is specified in separate keywords.
Note that all special functions are unary functions.
Use no more than one special function per equation.

The same functions, sources, constants, and units can be used more than
once in an equation. Spaces between these terms and parenthesis are op-
tional.

The following are examples of valid equations (the value of the EQN argu-
ment):

A1
1"3
1/(A1)
10"A1
10MV*T5
AI*B1
10V* A1-100
NEG(10V/S*AI-100)
(NEG(10V*TI+ 100) + T1
((AI* B2) ICl)

5-46

Mainframe Remote Commands

DEFINE (continued) DEF

Notes:

(((10"A1+ 10) * (30MV*BI-10)) / (100 OHM*C1
T7 + SQRT(B3)
SQR(T3) *
SQR(T7 * A2

If the trace is being displayed, and data is available, it will be updated imme-
diately. Otherwise, the new equation will be displayed when the trace is
next activated.

By reducing the number of points to process, the processing time can be
reduced. Starting with the first point of a source, the 7200A uses every n-th
point, where n depends on the timebase, the number of points in the
source, and the value selected for the maximum number of points.

5-47

Mainframe Remote Commands

DEFINEREPLAY DEFR
Purpose:

Command:

Query.

Response:

Arguments:

Default:

Examples:

Note:

See Also:

Defines a trace equation used during Replay Traces, which specifies the
source(s) of data and how it is processed.

prefix: DEFR keyword,value...,keyword,value

prefix: DEFR?

prefix: DEFR keyword,value...,keyword,value

prefix The prefix for this command is limited to traces, i.e., T1, T2 T8.

keyword Any valid keyword as for the DEFINE command.

The default equations assign the memories to each trace:

"11 = M1 T2= M2 T3= M3 T4= M4
T5= M5 T6= M6 "17= M7 T8= M8

T4:DEFR EQN, DIFF((30MV*M1 + 5) * T3), MAXPTS,20000
Set trace 4 equal to the time derivative of the product of T3 and M1 times
30 MV plus 5

T5:DEFR EQN, HIST(T2),PARAM,sclev Set trace 5 equal to the histo-
gram of trace 2, with the standard deviation pulse parameter.

T1 :DEFR? Query the trace equation for the trace I.
I"I :DEF EQN, MI ", MAXPTS,50000

This command’s syntax and arguments are identical to the DEFINE com-
mand exept that only Memories (MI thru M8) may be used as sources
the trace equation. Plug-ins and channel numbers are not allowed.

DEFINE

5-48

Mainframe Remote Commands

DELETE_FILE DELF

Purpose:

Command:

Argument:

Examples:

See Also:

Deletes the specified files on the internal or floppy disk.

DELETE_FILE keyword,value

The argument consists of a keyword followed by its value.

Keyword Meaning:Valqe

INPN

INAS

FLPY

Panel settings file on the internal disk
filename.ext filename including extension
or all files

Program file on the internal disk
filename.ext filename including extension
or all files

File on the floppy disk
filename.ext fllename including extension
or all files

DELF INPN,’MIKE.PNL" Delete the panel settings file MIKE.PNL from
the internal disk.

DELF FLPY,’~.LL FILES" Delete all files on the floppy disk.

DIRECTORY_LIST, COPY_FILE

5-49

Mainframe Remote Commands

DIRECTORY_LIST

Purpose:

Query.

Returns a listing of files on the intemal or floppy disk.

DIRECTORY_LIST? argument

Response: DIRECTORY_LIST =filel.ext",~le2.ext",...

Argument:

Examples:

The argument specifies the disk and group of files to be listed:
INPN Panel settings files on the internal disk
INAS Program files on the internal disk
FLPY All files on the floppy disk

DIR? FLPY Returns a list of all files on the floppy disk.
DIR "TRACE1.000", "TRACE1.001", "TRACE.PNU’

DIR

5-5O

Mainframe Remote Commands

DISPLAY DISP

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

Enable/disable display processing of traces and measurements. Disabling
display processing may increase acquisition rate and overall throughput
while still allowing processing of traces.

DISPLAY state

DISPLAY?

DISPLAY state

state ON Causes the traces which are turned on to be updated
on the screen.

OFF Stops display updates of traces and their associated
annotation. Any traces which are on are still processed
and can be read out to a host computer or stored to the
disk.

DISPLAY OFF

DISPLAY?

DISPLAY ON

Turns off display updates of all traces.

Queries whether display processing is enabled or
disabled.
Reports that display processing is enabled.

The display is always enabled when the 7200A is powered on or reset.

TRACE, DEFINE

5-51

Mainframe Remote Commands

DISPLAY_UPDATE DISU
Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Note:

See Also:

this command allows you to specify how often the display is updated while
a history function (average, histogram, etc.) is collecting data. To increase
the throughput, use a longer time between updates.

DISPLAY_UPDATE llme

DISPLAY_UPDATE?

DISPLAY_UPDATE time

time number of seconds between updates. Range is I to 50,000 in
increments of I second.

DISU 5 sets the periodic display update to 5 seconds

DISU? requests the current display update for history functions.
DISU 1000 Response indicates that the display is updated once every 1000
seconds while a history function is accumulating data.

This applies to all traces.

DEFINE

5-52

DOT_JOIN

Mainframe Remote Commands

DTJN

Purpose:

Command:

Query

Response:

Arguments:

Examples:

Selects whether or not lines should be drawn between acquired data points.

DOT_JOIN value

DOT_JOIN?

DOT_JOIN value

value ON

OFF

DOT_JOIN ON

DOT_JOIN?

DOT_JOIN OFF

enables the drawing of lines between data points.

only the data points will be displayed.

requests that traces be drawn with the data points
connected by lines.

Queries the method of displaying waveforms.

Indicates only the data points are being drawn.

5-53

Mainframe Remote Commands

DPE

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Sets the Data Processing Enable register (DPE). The DPE register deter-
mines which events in the Data Processing Register (DPR) are reported.
DPR identifies which internal software processing event(s) has completed.
Any reported DPR event sets the DPB summary message bit (bit # 1) of the
main Status Byte (STB).

DPE mask

DPE?

DPE mask

mask

DPE 15

DPE?
DPE 15

When expressed in binary, this number (between 0 and 1023)
represents the bits of the DPR that can be reported:

Bit #
9
8
7
6
5
4
3
2
1
0

Significance
Replay Traces Done
Record Traces Done
Self-test Done
Recall Done
Store Done
Auto Setup Completed
Maximum Sweeps Reached
Calibration Completed
Waveform Processing Completed
Hardcopy Completed

Enables the events represented by the lower four bits of this
event register (i.e., Hardcopy completed, waveform processing
completed, calibration completed, and maximum sweeps
reached). Set bit 3, i.e., decimal 8, bit 2 (decimal 4), bit
(decimal 2), and bit 0 (decimal 1). Summing the decimal
values yields 15.

Read the contents of the DPE.
Response indicates the contents as 15, the lower four enable
bits are set.

CAE, DPR?, MSE, WPE

5-54

Mainframe Remote Commands

DPR?

Purpose:

Query:

Response:

Argument:

Reads and then clears the contents of the Data Processing event Register
(DPR).

The DPR register identifies which internal software processing event(s) has
completed.

Some of the DPR register bits are summary bits for other status registers.
DPR? will not clear a bit if its corresponding register is not cleared.

Clearing the DPR register also clears the DPB summary message bit
(bit # 1) of the main Status Byte (STB).

DPR?

DPR value

value When expressed in binary, this number (between 0 and 1023)
represents the bits of the DPR.

The status bytes that each DPR bit summarizes and the bit’s assignment
follow:

Bit # Associated Status Byte Significance

9 none
8 none
7 none
6 none
5 none
4 none
3 MSR
2 CAR
1 WPR
0 none

Replay Traces Done
Record Traces Done
Self-test Done
Recall Done
Store Done
Auto Setup Completed
Maximum Sweeps Reached
Calibration Completed
Waveform Processing Completed
Hardcopy Completed.

Bit # 1, Waveform Processing Completed, is a summary message bit that is
set as soon as processing for any trace is completed. It is cleared when the
WPR register is read.

5-55

Mainframe Remote Commands

DPR? (continued)

Examples:

See Also:

Bit # 4, Auto Setup Completed, is set when all the plug-ins have been auto-
matically setup.

All registers must be cleared using the *CLS comand before waiting for an
event to occur. Otherwise, a previous event may be read.

DPR?
DPR 4

Read and then clear the DPR register.
Response indicates that calibration is completed.

ALST2, CAR, DPE, MSR, * S’FB?, WPR, * CLS

5-56

Mainframe Remote Commands

EAE, EBE

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Each of these commands acts in the same way on its corresponding plug-
in event status enable register. The middle letter of the command identifies
the corresponding plug-in. Although plug-in A is discussed, the following
description applies equally to plug-in B.

The command EAE sets the error mask for plug-in A Enable register. The
EAE register determines which events in the Event for plug-in A Register
(EAR) are reported. EAR identifies the type of error which occurred in the
plug-in. Any reported EAR event sets the EAB summary message bit (bit
1) of the Device Dependent Register (DDR) and may propagate to
main Status Byte (STB).

EAE mask, EBE mask

EAE?, EBE?

EAE mask, EBE mask

mask When expressed in binary, this number (between 0 and 63)
represents the bits of the EAR that can be reported:

Bit # Significance
5 Calibration Failed
4 External overload
3 Channel 4 overload
2 Channel 3 overload
1 Channel 2 overload
0 Channel 1 overload

EAE 15

EAE?
EAE 15

Enables the events represented by the lower four bits of this
event register (i.e., channels I through 4 overload). Set bit
i.e., decimal 8, bit 2 (decimal 4), bit 1 (decimal 2),
bit 0 (decimal 1). Summing the decimal values yields 15.

Read the contents of EAE.
Response indicates the contents as 15, the lower four enable
bits are set.

DDR, EAR?., EBR?

5-57

Mainframe Remote Commands

EAR?, EBR?

Purpose:

Query:.

Response:

Argument:

Examples:

See Also:

Each of these commands acts in the same way on its corresponding plug-
in status register. The middle letter of the command identifies the corre-
sponding plug-in. Although plug-in A is discussed, the following description
applies equally to plug-in B

The EAR?. query reads and then clears the contents of the Error(s) for plug-
in A Register. The EAR specifies the cause of the failure (e.g., channel
overload).

Clearing the EAR register also clears the EAB summary message bit
(bit # 1) of the Device Dependent Register (DDR) and the effect could
propagate to the main Status Byte (STB).

EAR?, EBR?,

EAR value, EBR value,

value When expressed in binary, this number (between 0 and 63)
represents the bits of the EAR:

Bit # Si_anificance
5 Calibration Failed
4 External overload
3 Channel 4 overload
2 Channel 3 overload
1 Channel 2 overload
0 Channel 1 overload

EBR?
EBR 2

Read and then clear the contents of EBR.
Response indicates channel 2 overload.

ALST?, DDR, EAE, EBE, * STB

5-58

Mainframe Remote Commands

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Sets the error mask for the Mainframe Enable register (EME). The EME reg-
ister determines which events in the Event for Mainframe Register (EMR)
are reported. EMR identifies the type of error which occurred in the main-
frame. Any reported EMR event sets the EMB summary message bit (bit
1) of the Device Dependent Register (DDR) and propagates to the main
Status Byte (STB).

EME mask

EME?

EME mask

mask When expressed in binary, this number (between 0 and 63)
represents the bits of the EMR that can be reported:

Bit # Signific~ln~e
5 System Clock Failed
4 I/O failure
3 Hard disk failure
2 Floppy failure
1 Display failure
0 Internal communication hardware failure

EME 15

EME?
EME 15

Enables the events represented by the lower four bits of this
event register (i.e., internal communication hardware failure,
display failure, floppy failure, and hard disk failure). Set bit 3, i.e.,
decimal 8, bit 2 (decimal 4), bit 1 (decimal 2),
bit 0 (decimal 1). Summing the decimal values yields 15.

Read the contents of EME.
Response indicates the contents as 15, the lower four enable
bits are set.

EMR?

5-59

Mainframe Remote Commands

EMR?

Purpose:

Query:.

Response:

Argument:

Examples:

See Also:

Reads and then clears the contents of the Error(s) for the Mainframe event
Register (EMR). The EMR specifies the cause of the failure (e.g., floppy
disk hardware failure).

Clearing the EMR register also clears the EMB summary message bit
(bit # 1) of the Device Dependent Register (DDR) and the effect could
propagate to the main Status Byte (STB).

EMR?

EMR value

value When expressed in binary, this number (between 0 and 63)
represents the bits of the EAR:

Bit # Significance
5 System Clock Failed
4 I/0 failure
3 Hard disk failure
2 Floppy failure
1 Display failure
0 internal communication hardware failure

EMR?
EMR16

Read and then clear the EMR.
Response, i.e., 10 in hexadecimal, indicates that an I/0 failure
occurred.

ALST?, DDR, EME, * ESR?, * STB?

Mainframe Remote Commands

Purpose:

Command:

Query.

Response:

Argument:

Examples:

See Also:

Sets the Execution error Enable register (EXE). The EXE register deter-
mines which events in the Execution error status Register (EXR) are re-
ported. EXR identifies the type of execution error that has occurred. Any
reported EXR event sets the EXB summary message bit (bit # 4) of the
standard Event Status Register (ESR) and propagates to the main Status
Byte (STB).

EXE mask

EXE?

EXE mask

mask When expressed in binary, this number (between 0 and 15)
represents the bits of the EXR that can be reported:

Bit # Significance

EXE 3

EXE?
EXE 3

3 Fatal Error
2 Internal Error
1 Operator Error
0 Operator Warning

Enables the events represented by the lower two bits of this
event register (i.e., operator waming, operator error).

Read the contents of the EXE.
Response to query indicates that the lower two enable bits are set.

EXR?

5-61

Mainframe Remote Commands

EXR?

Purpose:

Query:.

Response:

Argument:

The EXR?. query reads and then clears the contents of the Execution error
Register (EXR).

EXR identifies the type of execution error that has occurred. Each of four
bits in the EXR corresponds to a different category of error/warning condi-
tions. Each category corresponds to a different value queue of error/warn-
ing codes. If a queue is reported as having one or more codes present, the
corresponding bit in the EXR is set.

Clearing the EXR register also clears the EXB summary message bit
(bit # 4) of the main Status Byte (STB).

EXR?

EXR value

value When expressed in binary, this number (between 0 and 15)
represents the bits of the EXF~

Bit # Associated Status Queue Significance
3 FER Fatal Error
2 IER Internal Error
1 OER Operator Error
0 OWR Operator Warning

Examples:

See Also:

EXR?
EXR1

Read and then clear the EXR.
Response indicates that an operator warning error is reported.

ALST?, * CLS, * ESR?, EXE, * STB?

5-62

Mainframe Remote Connnands

FER?
Purpose:

Query.

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Fatal Error Register (FER). The
FER register identifies the most recent fatal command error. A fatal error
occurs when a failure inside the 7200A stops its operation. With some fail-
ures, operation can be continued by turning off and on power.

The FER is a queue which contains a unique encoded value. The value cor-
responds to the fatal error which stopped the 7200A.

Clearing the FER register also clears the FEB summary message bit
(bit # 3) of the Execution error Register (EXR) and the effect could propa-
gate to the main Status Byte (STB).

FER?

FER value

value Corresponds to an error. A listing of all encoded values with
their meanings is found in Appendix A.

FERTRequests the latest fatal error value.
FER 735 Response indicates that the Trace Edit subsystem is inoperable

ALST?, * CLS, * ESR?., EXE, EXR?, * STB?

5-63

Mainframe Remote Commands

FIND_CTR_RANGE FCR
Purpose:

Command:

Arguments:

Examples:

See Also:

Automatically sets the center and width of a histogram or the center and
height of a trend to best display the accumulated events.

preflx:FIND_CTR_RANGE

prefix The prefix is limited to traces T1, T2,..., T8

T3:FCR Automatically sets the center and range of the histogram or
trend defined in trace 3.

CENTER__MAX

FORMAT_FLOPPY

Mainframe Remote Commands

FFLP

Purpose:

Command:

Argument:

Notes:

Formats the floppy disk in MSDOS compatible format.

FORMAT_FLOPPY type

type specifies the floppy density

HIGH formats the floppy disk for 1.44 Mbytes

LOW formats the floppy for 720 kbytes

formatting a double density disk (DSDD) for HIGH density can result in un-
reliable operation.

5-65

Mainframe Remote Commands

GPIB_ADDRESS

Purpose:

Command:

Query:.

Response:

Argument:

Example:

Notes

See Also:

set the 7200A’s GPIB address

GPIB_ADDRESS addr

GPIB_ADDRESS?

GPIB_ADDRESS addr

addr the GPIB address in the range 0 to 31

GPIB_ADDRESS 8

GPIB_ADDRESS?
GPIB_ADDRESS 6

Sets the 7200A GPIB address

GPM)

Queries the 7200A’s GPIB address
Reports that the 7200A’s GPIB address is 6

Care should be used when issuing this command from GPIB since it will
immediately change the address of the 7200A.

REM_CTRL

5-66

Mainframe Remote Commands

GRID

Purpose:

Command:

Query..

Response:

Argument:

Example:

See Also:

Selects the number of grids to display. All grids are 8 divisions vertically by
10 divisions horizontally. The number of grids can be independantly
specified for the full screen display and for the half screen display (i.e.
when waveform parameters are on).

GRID full type, half type

GRID?

GRID full type, half type

full type choice of SINGLE, DUAL, QUAD, or OCTAL

half type

GRID SINGLE,DUAL

GRID?
GRID QUAD,DUAL

choice of SINGLE, DUAL, QUAD

Causes a single grid to be displayed with all
traces overlaid when in the full screen display
and dual grids for the half screen display

Requests the grid type currently displayed.
Indicates that QUAD grid is selected for full screen
displays and DUAL grids for half screen displays.

CURSOR_SET, VERT_POSITION

5-67

Mainframe Remote Commands

GRID_STYLE GRDS
Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Selects the style of grid to display

GRID_STYLE value

GRID_STYLE?

GRID_STYLE value

choices are: STANDARD, DOTS, CFIOSSHAIFI, and BOX.

GRID_STYLE BOX requests that the grid be drawn as a box around the
trace area only.

GRID_STYLE? Queries the current grid style.

GRID_STYLE STANDARD

5-68

Mainframe Remote Commands

HARDCOPY HCPY
Purpose:

Command:

Query.

Response:

Argument:

Examples:

Note:

See Also:

Initiates the currently setup hardcopy (screen dump, waveform, or pro-
gram) to the selected device. If a hardcopy is in progress, it can be aborted
by sending this command with the ABORT argument.

HARDCOPY

HARDCOPY Abort

HARDCOPY?

HARDCOPY status

Abort Terminates immediately any hardcopy in progress.

status Response to query: 0- no hardcopy in progress,
1- hardcopy in progress

Optionally, the Hardcopy Done bit in the Data Processing
status register (DPR) may be checked for hardcopy status.

HCPY Initiates a hardcopy to the Port using the HCSU command..

HCPY Abort Immediately terminates hardcopy.

HCPY?
HCPY 0

Requests whether hardcopy is in progress.
Response to query indicates that no hardcopy
is in progress.

When the Remote Control port is the same as the Hardcopy port, the hard-
copy output is sent to the Remote Host. In this case, the 7200A does not
enter Talker-Only mode but instead will wait to be addressed to talk by the
Remote Host before sending the hardcopy data.

HARDCOPY_SETUP, INTS

5-69

Mainframe Remote Commands

HARDCOPY_SETUP HCSU

Purpose:

Command:

Query:.

Configures the 7200A hardcopy driver. The command can specify the de-
vice type, transmission mode, plot size, etc. The query has no parameters
and retums all possible keyword and value pairs.

HARDCOPY_SETUP keyword,value,keyword,value,...,keyword ,value

HARDCOPY_SETUP?

Response: HARDCOPY_SETUP keyword,value,keyword,value keyword,value

Arguments: An argument consists of a keyword followed by its value. Any number of
arguments in any order may be used to change individual settings.

Kevword
PORT

ANNOT

COMM
OPTY

Meaning:Value
Port used for hardcopy device:
GPIB See note below.
RS232 See note below.
CENT Rear panel Centronics connector.
FLOPPY Hardcopy to a file on floppy disk. When

selected, the following argument indicates
the destination file:
FILE DOS compatible filename:" string."

Annotation ON will place along the top of the grid and
waveform display: the date, time, up to a 40 character
comment, and the LeCroy logo. Softkey labels are also included.
OFF suppresses their inclusion except that softkeys are always
printed in setup screens.
Up to 40 character comment describing the print/plot: string
Output type: SCREEN_DUMP, WAVEFOF~, PROGRAM

For plotters, use the following:

DEV

SPEED

Name of the plotter:
HP7470A Hewlett Packard 7470A or compatible 74xx series
FP5301 Graphtec FP5301
PM8151 Philips PM 8151
HP7550A Hewlett Packard 7550A or compatible 75xx series
Drawing rate:
N normal
S slow (for slow-drying inks)

5-70

Mainframe Remote Commands

HARDCOPY_SETUP (continued) HCSU

PENS

PSIZE

Maximum number of pens supported by plotter:
1 through 8
Size of the plotter paper needed to fit the plot:
A5 for 5.5" x 8.5"
A4 for8.5"x 11"
A3 for 11" x 17"
NS or a non-standard size. When selected, the following

arguments can be used:
GRID size of grid square when single grid is selected,

in mm: 0.1 through 99.9
LLX lower left X-position (mm): -999.9 through 999.9
LLY lower left Y-position (mm): -999.9 through 999.9

For printers, use the following:

DEV Name of the printer:
CIT_120D Citizen 120D
HPQJ Hewlett Packard Quiet Jet
EPSON FX series or compatibles
HP_LASER_JETHewlett Packard Laser Jet, printer density:

DENS 75_dpi, 100_dpi, 150_dpi, 300_dpi
HP_THINK_JET Hewlett Packard Think Jet, printer density:

DENS SINGLE, DOUBLE
DENS Printer density for other than Laser and Think Jet:

SINGLE, DOUBLE, QUADRUPLE, HIGHSPEED, CRT,
HIGH_RESOLUTION, ONE_TO_ONE, TWO_TO_ONE

PFEED Page feed ON will cause the last page printed to be followed by
a form feed. OFF suppresses the final form feed.

PSIZE Size of the printer paper needed to fit the plot:
A5 for 5.5" x 8.5"
NS for a non-standard size. When selected, the following

argument can be used:
GRID size of grid square when single grid is

selected, in mm: 0.1 through 99.9.

If the output type (OPTY) is WAVEFORM:

TRNO Trace number to print:
T1, T2, T3, T4, T5, T6, -r7, T8

5-71

Mainframe Remote Commands

HARDCOPY_SETUP (continued) HCSU

Examples:

WBLK

DESC

TIME
DAT1
DAT2

Part(s) of the waveform to print:
ALL DESC, TEXT, TIME,

DAT1, and DAT2 (see below)
acquistion settings
user text field in the waveform
segmented waveform time arrays
actual waveform data samples
for dual trace waveforms, such as
envelopes, prints processed waveform data

HCSU PORT, GPIB,SPEED,N,LLX,0,LLY,0
Sets the hardcopy port to GPIB, the speed to normal, and the
lower left X- and Y-positions to 0.

HCSU PORT, FLOPPY, FILE,TRACE1,ANNOT, ON,COMM,’TNt I Data"
Sends the hardcopy to a file called TRACE1 .HCP on the floppy
disk. The title above the grid is Test I Data. Since DEV is not
specified, the format of the hardcopy file will correspond to the
last selected printer or plotter.

HCSU DEV, H P_LASER_JET, DENS,300_dpI,TRNO,T2,WBLK, DAT1
Uses the Hewlett Packard Laser Jet, with a print density of
300 dpi, to print the waveform data samples of trace 2. Since
PORT is not specified, the hardcopy will be sent to the last
selected port.

HCSU? Queries all keywords and value pairs.
HCSU PORT, FLOPPY, FILE,TRACE1,DEV, H P7550A, ANNOT,
ON ,SPEED, N, PEN S,8, PSIZ E, N S,G RI D,20.0, LLX, 150.0, LLY, 150.0,COM M,
TEST 1 DATA

HCSU?
HCSU PORT, RS232,DEV, H P7470A, ANNOT, OFF,SPEED,S,PENS,
5,PSIZE,A5,COMM,"7200A DIGITAL OSCILLOSCOPE"

HCSU?
HCSU PORT, CENT, DEV, EPSON,DEN S,TWO_TO_ON E,AN NOT,
ON,PFEED,ON,OPTY, SCREEN_DUMP, PSIZE,NS,GRID,15.0,COMM,
7200A DIGITAL OSCILLOSCOPE

$-72

Mainframe Remote Commands

HARDCOPY_SETUP (continued) HCSU

Note:

See Also:

HCSU?
HCSU PORT, GPIB,DEV, H P_THINK_J ET, PFEED,ON,OPTY,
WAVEFOF~I,TRNO,T8,WBLK, DESC

HCSU?
HCSU PORT, CENT, DEV, H P_LASER_J ET, PFEED,ON,OPTY,
PROGRAM

When the Remote Control port is the same as the Hardcopy port, the hard-
copy output is sent to the Remote Host. In this case, the 7200A does not
enter Talker-Only mode but instead will wait to be addressed to talk by the
Remote Host before sending the hardcopy data

If PORT is set to the Remote Control port, then the remote HCPY command
will send the currently selected hardcopy to the Remote Host as a response.
This will disable remote control operation from that port until the hardcopy
operation is complete. If the Remote Host is GPIB, then the 7200A will wait
to be addressed to talk before sending the hardcopy data. However, if the
Hardcopy key is pressed, then the 7200A will enter Talker-Only mode and
send the data onto the GPIB bus. If PORT is different from the Remote Con-
trol port, then the remote HCPY command will work the same as pressing
the local Hardcopy key. For example, if the Remote Host port is RS232 and
the Hardcopy PORT is GPIB, then sending HCPY from RS232 will put the
7200A into Talker-Only mode and initiate the hardcopy to the GPIB port.

HARDCOPY, HARDCOPY-TRANS, INTS

5-73

Mainframe Remote Commands

HARDCOPY_TRANS

Purpose:

Command:

Argument:

Example:

Note:

See Also:

HCTR

Immediately sends a series of characters to the hardcopy device.

HARDCOPY_TRANS string

string String of characters to send to the hardcopy device.

HCTR Test.

The text string must be less than 2048 characters.

HARDCOPY_SETUP

5-74

Mainframe Remote Commands

HIST_ORIENT HISO
Purpose:

Command:

Query.

Response:

Arguments:

Example:

Note:

See Also:

This command lets you select the display orientation for histograms. In the
standard orientation, the histogram is displayed with the zero baseline at
one division up from the bottom of the grid and the peaks grow upward, al-
ternately, you can display the baseline near the top of the screen and have
the peaks grow downward.

H IST_ORI ENT value

HIST_ORIENT?

HIST_ORIENT value

value STANDARDdraws the zero baseline at one division from the bottom of
the grid and peaks grow upward.

INVERT draws the zero baseline at one division from top of
the grid and the peaks grow downward.

HISO STANDARDTells the 7200A to display histograms so that the peaks
grow upward

HISO?
HISO INVERT

Requests the current orientation for histograms.
Reports that histograms are displayed with their
peaks growing downward.

This affects the display of all histograms. It applies to all traces.

DEFINE

5-’/5

Mainframe Remote Commands

HOR_MAGNIFY HMAG

Purpose:

Command:

Query:.

Response:

Argument:

Sets the horizontal display magnification of the specified trace. Increasing
the magnification causes the displayed trace to represent a shorter region
of points. A shorter region accentuates the details of that region. Decreas-
ing the Horizontal magnification value reduces its magnification until all its
data points are represented on the screen (no magnification). The trace
expanded about the center of the grid.

preflx:HOR_MAGNIFY mag

preflx:HOR_MAGNIFY?

prefix:HOR_MAGNIFY mag

prefix The prefix is limited to traces, i.e., T1, T2 TS.

meg Magnification value, specified in a 1,2,5 sequence; that is,
1,2,5,10,20 2000.

Examples:

Note:

T1 :HMAG 5 Sets the magnification value to 5 which has the same effect on
the number of displayed data points as decreasing the time
per division by two steps (without changing the sampling rate).

T3:HMAG? Requests the magnification value for trace 3
T3:HMAG 20 Response indicates a value of 20.

For waveforms acquired in sequence mode, a magnification of 2 will repre-
sent one segment on the screen. Greater values of magnification will result
in displaying shorter regions of that segment. When magnifying waveforms
acquired in sequence mode, the displayed waveform represents one seg-
ment. The desired segment is selected by HOR_POSITION.

See Also: HOR_POSITION

Mainframe Remote Commands

HOR_POSITION HPOS
Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Sets the horizontal display position (not the trigger delay) of the specified
trace. Increasing the horizontal position moves the waveform towards the
right of the display while decreasing the value moves it towards the left.

preflx:HOR_POSlTlON pos, seg

preflx:HOR_POSlTlON?

prefix:HeR_POSITION pos, seg

prefix The prefix is limited to traces, i.e., T1, T2 T8

pos Gives the position of the center of the trace relative to the
left edge of the grid. Range is 0 (left edge at center) through 1.0
(center of trace is placed on the right edge of the grid)
increments of .01. A setting of 0.5 centers the trace on the
screen.

seg Indicates the segment number to expand for segmented
traces. If this argument is not speciflced, the current
segment is used.

T2:HPOS 0.5,3 The center data point of the third segment of the
waveform at acquisition is placed at the center of the
screen.

T4:HPOS?
T4:HPOS 1,5

Requests the position of the center of trace 4.
Response to query is the position of the center data point
of acquisition relative to zero position. The center data
point of the fifth segment is at the right-most screen
position.

HeR_MAGNIFY

5-77

Mainframe Remote Commands

IER?

Purpose:

Query..

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Internal Error Register (IER). The
IER register identifies the most recent internal error. An internal error oc-
curs when the 7200A enters an undefined state. Since it is unlikely that this
state would ever occur, LeCroy should be immediately informed of the cir-
cumstances surrounding the generation of this error.

The IER is a 16-bit queue which contains a unique encoded value. The
value corresponds to the most recent internal error.

Clearing the IER register also clears the IEB summary message bit (bit # 2)
of the Execution error Register (EXR) and the effect could propagate to the
main Status Byte (STB).

IER?

IER value

value Corresponds to an error. A listing of all encoded values with
their meanings is found in Appendix A.

IER? Requests the latest internal error value.
IER 539 Response indicates an internal Pulse Parameter error.

ALS’r?, * CLS, * ESR?, EXE, EXR?, * STB?

5-?8

Mainframe Remote Commands

INE

Purpose:

Command:

Query.

Response:

Argument:

Sets the Internal state change Enable register (INE). The INE register
determines which events in the Internal state change Register (INR) are re-
ported.

Each bit in the INR identifies which plug-in received a trigger. Any reported
INR event sets the INB summary message bit (bit # 0) of the main Status
Byte (STB).

INE mask

INE?

INE mask

mask When expressed in binary, this number (between 0 and 63)
represents the bits of the INR that can be reported:

Bit #
1
0

Significance
Trigger done for plug-in B
Trigger done for plug-in A

Examples:

See Also:

INE 3

INE?
INE 3

INR?

Enables the events represented by the lower two bits of this
condition register (i.e., plug-ins A and B received a trigger).
Set bit 1 (decimal 2), and bit 0 (decimal
Summing the decimal values yields 3.

Read the contents of the INE
Response to query indicates that a trigger done for
plug-ins A and B can be reported.

5-79

Mainframe Remote Commands

INR?

Purpose:

Query:.

Response:

Argument:

Examples:

See Also:

Reads the contents of the Internal state change Register (INR).

Each bit in the INR identifies which plug-in has received a trigger. Since the
INR is an event register, any bits stay set until the register is read. After it is
read, all the bits are cleared. Once cleared, its summary bit, INB, in the STB
is also cleared.

INR?

INR value

value When expressed in binary, this number (between 0 and 63)
represents the bits of the INF~

Bit #
1
0

Sionlficance
Trigger clone for plug-in B
Trigger done for plug-in A

INR?
INR 1

Read the contents of the INR.
Response indicates that the trigger is done for plug-in A.

.N.s’r?, INE, * STB?

5-8O

Mainframe Remote Commands

INSPECT?. INSP?

Purpose:

Query:.

Response:

Arguments:

Examples:

Transfers a waveform or part of a waveform from the 7200A to the host
computer in intelligible form. The command is based on the explanation of
the format of a waveform given by the template. Each logical data block of
a waveform may be inspected by giving its name (e.g. TRIGTIME as men-
tioned in the template) as an argument to this query.

prefix: INSPECT?item,item,...,item

INSPECT item,< ASCII string> ,item,< ASCII string> item,< ASCII
string>

prefix The prefix for this command is limited to traces!i.e., T1, "I2 T8.

items any logical data block in the TEMPLATE, for example
ALL all the waveform blocks
DESC waveform descriptor(acquisition settings)
TEXT user defined trace annotation
TIME RIS time descriptor
DAT1, DAT2 1st and 2nd blocks of waveform data

or any field within the descriptor
If no argument is specified, the 7200A
responds as if ALL is sent.

T1 :INSP? TIMEBASE Query the timebase setting for Trace1

T1 :INSP TIMEBASE:500_us/divResponse indicates "l]mbase set to
500 l.LS/div

T1 :INSP? DESC Query the entire waveform Descriptor
Response is a formatted string over
300 bytes.

5-81

Mainframe Remote Commands

INSPECT?. (continued) INSP?

TI:INSP? TRIGGER_COUPLING,TRIGGER_SOURCE,TRIGGER_SLOPE

TI:INSP TRIGGER_COUPLING:AC,TRIGGEFLSOURCE:CHANNEL_I,
TRIGGER_SLOPE: POSITIVE

Notes:

See Also:

The entire response is an ASCII string.

Acts in a manner similar to the WAVEFOFWI? except INSP? returns text
that can be read by the user.

Use the query TEMPLATE? to obtain an up-to-date copy of arguments.

This most basic form of waveform readout supports even the sophisticated
user who wishes to verify his understanding and interpretation of the tem-
plate and descriptor. Refer to Section 3: Waveform Transfer for details.

WAVEFOF~I?,TEM PLATE?, TRACE_ANOT

Mainframe Remote Commands

INTENSITY INTS

Purpose:

Command:

Query.

Response:

Arguments:

Examples:

No~s:

See Also:

Sets the intensity level of (a) the grid, (b) the trace and the text, or (c)
background. The intensity level is expressed as a percentage. A level of
100 corresponds to the maximum intensity while a level of 0 sets the inten-
sity to its minimum.

INTENSITY keyword,value, keyword,value, keyword, value

INTENSITY?

INTENSITY keyword,value,keyword,value, keyword, value

keyword
value

May be either TRACE, GRID, or BKG
May be from 0 (minimum intensity) through
100 (maximum intensity).

INTS GRID,65 Sets the intensity of the grid to 65°/o.

INTS?
INTS G RI D,65,TRACE,90,BKG,30

Requests the intensities of both grid and trace.
Reports that the grid is at 65% intensity,
the trace is at 90%, and the background
is at 30%.

An argument has two parts: keyword followed by value. Any number of
keyword, value pairs may be used in any order to change individual set-
tings. The 7200A returns all values.

When doing a hardcopy, setting the grid intensity to 0 causes the plot to be
done without a grid.

HARDCOPY

5-83

Mainframe Remote Commands

LOCAL LOC
Purpose:

Command;

Examples:

Notes:

See Also:

Races the 7200A into Local mode. In Local mode all front panel controls
are operational and the 7200A will accept and execute all remote com-
mands. However, the operator is cautioned against sending remote com-
mands and pressing local keys at the same time since these events occur
asynchronously and may produce unexpected results.

LOCAL

LOC Puts the 7200A into Local mode

The 7200A may also be put into Local mode at any time if REN (Remote En-
able) is deasserted.

If the GPIB interface is currently in the Remote state, sending the GTL inter-
face message while addressing the 7200A to Listen will put the 7200A into
Local mode.

If the GPIB interface is currently in the Remote with Local Lockout state,
sending the GTL interface message will place the 7200A into Local with Lo-
cal Lockout mode. Addressing the 7200A to Listen while in Local with Lo-
cal Lockout puts the GPIB interface into Remote with Local Lockout.

Sending LOCAL will always put the 7200A into Local mode. If LOCAL is
sent with REN asserted, the GPIB interface is put into Remote mode. If LO-
CAL is sent with Ren deasserted, the GPIB interface is put into Local mode.

See IEEE-488.1(section 2.8) for more details concerning GPIB state transi-
tions.

REMOTE, LOCKOUT

5-84

Mainframe Remote Commands

LOCKOUT LLOK

Purpose:

Command:

Examples:

Notes:

See Also:

Races the 7200A into Remote with Local Lockout mode. In this mode all
local keys on the mainframe and plug-in(s) are disabled and only remote
commands are accepted. Once Remote with Local Lockout is set, it can
only be cleared when the 7200A is put into Local mode or Remote mode
without Local Lockout. See the Local and Remote commands which ex-
plain how this is done.

LOCKOUT

LLOK Puts the 7200A into Remote with Local Lockout

The 7200A also switches to Remote with Local Lockout if we are in Local
mode and the computer addresses it to Listen and sends the LLO GPIB in-
terface message. However, this will only happen if the GPIB interface bus
had been set to the local state when the LLO message was sent.

When the GPIB interface is set to Remote mode it cannot be set to Remote
with local Lockout mode, even though the LOCKOUT will place the 7200A
into Remote with Local Lockout mode. The GPIB interface can only be put
into Remote with Local Lockout from the Local state. When the GPIB inter-
face is put into Remote with Local Lockout, it forces the 7200A into Remote
with Local Lockout.

When the GPIB interface is in Remote with Local Lockout, deasserting REN
will put the GPIB interface into Local mode. Sending the GTL interface
message puts the GPIB interface into the Local with Local Lockout mode.

Sending LOCKOUT will always put the 7200A into Remote with Local Lock-
out mode. If LOCKOUT is sent with REN asserted, the GPIB interface is
put into Remote mode. If LOCKOUT is sent with REN deasserted, the
GPIB interface is put into Local mode.

See IEEE-488.1 (Section 2.8) for more details concerning GPIB state transi-
tions.

REMOTE, LOCAL

5-85

Mainframe Remote Commands

MSE

Purpose: Sets the Maximum Sweeps Event enable register (MSE). The MSE register
determines which events in the Maximum Sweeps Register (MSR) are re-
ported. The MSR identifies which trace has reached its maximum number
of sweeps. Any reported MSR event sets the MSB summary message bit
(bit # 3) of the Data Processing Register (DPR) and propagates to the
Status Byte (STB).

Command: MSE mask

Query:. MSE?

Response: MSE mask

Argument: mask When expressed in binary, this number (between 0 and 255)
represents the bits of the Maximum Sweeps Register the user
wants reported to the DPR:

Bit #
7 Maximum swee
6 Maximum swee
5 Maximum swee
4 Maximum swee
3 Maximum swee
2 Maximum swee
1 Maximum swee
0 Maximum swee

Sionificance
as reached for Trace 8
as reached for Trace 7
~s reached for Trace 6
~s reached for Trace 5
~s reached for Trace 4
~s reached for Trace 3
~s reached for Trace 2
~s reached for Trace I

Examples: MSE 15 Enables the events represented by the lower four bits of this
event register (i.e., maximum sweeps reached for traces
through 4). Set bit 3, i.e., decimal 8, bit 2 (decimal 4),bit
(decimal 2), and bit 0 (decimal 1). Summing the decimal values
yields 15.

MSE? Read the contents of the MSE.
MSE 15 Response to query indicates the lower four enable bits are set.

See Also: MSR?, WPR?, WPE

Mainframe Remote Commands

MSR?

Purpose:

Query:.

Response:

Argument:

Examples:

See Also:

Reads and then clears the Maximum Sweeps Register (MSR) which identi-
fies the trace for which the maximum sweeps has been reached.

This applies to summation averaging, histograms, envelope, and any other
routines which require a history to be accumulated.

Clearing the MSR register also clears the MSB summary message bit
(bit # 3) of the Data Processing Register (DPR) and the effect could propa-
gate to the main Status Byte (STB).

MSR?

MSR value

value When expressed in binary, this number (between 0 and 255)
represents the bits of the MSR:

MSR?
MSR 3

Bit #
7
6 Maximum
5 Maximum
4 Maximum
3 Maximum
2 Maximum
1 Maximum
0 Maximum

Significance
Maximum sweeps reached for Trace 8

sweeps reached for Trace 7
sweeps reached for Trace 6
sweeps reached for Trace 5
sweeps reached for Trace 4
sweeps reached for Trace 3
sweeps reached for Trace 2
sweeps reached for Trace I

Read the contents of the MSR.
Response indicates that the maximum sweeps are reached for
traces 1 and 2.

ALSO., DPE, DPR?, MSE, * STB?

5-8"/

Mainframe Remote Commands

MULTI_ZOOM

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

MZOM

Allows the selected traces to be simultaneously expanded and reposi-
tioned, horizontally and/or vertically whenever a command from either the
front panel or remote host is issued for any trace in the group. The group is
defined by all traces which are enabled by MULTI_ZOOM_SETUP.

MULTI_ZOOM value

MULTI_ZOOM?

MZOM value

value ON

OFF

MZOM ON

MZOM?

MZOM off

MULTI_ZOOM_SETUP, HOR_MAGNIFY, HOR_POSITION,
VERT_POSITION, VERT_MAGNIFY

Turns multi zoom on

Turns multi zoom off

Turns on multi zoom

Requests multi zoom status

indicates multi zoom is off

5-88

Mainframe Remote Commands

MULTIZOOM_SETUP MZSU

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

Groups traces together for simultaneous expansion and repositioning. Al-
lows the user to select which axis, (horizontal, vertical or both horizontal
and vertical) the trace group will be affected when MULTI_ZOOM is en-
abled.

Selects which traces are in the group which will be simultaneously ex-
panded and repositioned, horizontally and/or vertically when multi zoom is
on.

MULTI_ZOOM SETUP keyword, value, keyword, value,..., keyword,
value

MULTI_ZOOM_SETUP?

MULTI_ZOOM_SETUP keyword, value, keyword, value keyword, value

Keyword meaning values

LOCK selects horizontal, vertical, or both HOR, VERT
HOR_VEFIT

T1, T2 T8 trace number to add/delete ON or OFF

MZSU LOCK, HOR, T1, ON, T2, ON traces I and 2 locks together
for horizontal expansion only

MZSU? requests lock and trace status

MZSU LOCK, VERT, T1, OFF, T2, ON, T3, ON, T4, ON,
T5, OFF, T6, OFF, "]7, OFF, T8, OFF

indicates traces 2,3, and 4
are locked for Vertical expansion

MULTI_ZOOM, HOR_MAGNIFY. HOR_POSITION, VERT_POSITION,
VERT_MAGNIFY

5-89

Mainframe Remote Connnands

OER?

Purpose:

Query:.

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Operator Error Register (OER).
The OER register identifies the most recent operator error. An operator er-
ror occurs when a command cannot be executed because it contains an il-
legal request. For example, an argument is outside its required range.

The OER is a queue which contains a unique encoded value. Each value
corresponds to a particular operator error.

Clearing the OER register also clears the OEB summary message bit
(bit # 1) of the Execution error Register (EXR) and the effect could propa-
gate to the main Status Byte (St’B).

OER?

OER value

value Corresponds to an error. A listing of all encoded values with
their meanings is found in Appendix A.

OER?
OER 200

Requests the latest operator error value.
Response indicates an error parsing the remote command.

,N.ST?, * CLS, * ESR?, EXE, EXR?, * STB?

5-90

Mainframe Remote Commands

OWR?
Purpose:

Query..

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Operator Warning Register
(OWR). The OWR register identifies the most recent operator warning er-
ror. An operator warning error occurs when a command contains an illegal
request but is automatically corrected. The command is completed using
the correction. For example, if an argument is sent that is between its de-
fined steps, the 7200A will complete the command using the step closest to
the requested value.

The OWR is a queue which contains a unique encoded value. The value
corresponds to the most recent operator warning.

Clearing the OWR register also clears the OWB summary message bit
(bit # 0) of the Execution error Register (EXR) and the effect could propa-
gate to the main Status Byte (STB).

OWR?

OVVR value

value Corresponds to an operator warning. A listing of all encoded
values with their meanings is found in Appendix A.

OWR?
OWR2

Requests the latest operator warning value.
Response indicates that a command was sent which attempted
to set a value outside its bounds. The value was adjusted to its
limit and used as such in subsequent operations.

ALS’F?, * CLS, * ESR?, EXE, EXR?, * STB?

5-91

Mainframe Remote Commands

PARAMETER_ADD PAAD
Purpose:

Command:

Query:.

Response:

Arguments:

Adds a waveform parameter to the list of parameters calculated when the
displayed cursor type (as set by CURSOR_MEASURE) is Extended Pa-
rameters. These parameters are recalculated each time the trace is up-
dated. The calculation is based on a section of the trace that is delineated
by two cursors (as set by CURSOR_SET).

prefix:PARAMETER_ADD parameter [,keyword,value] [,keyword,value]
[,poslUon], ...,
parameter [,keyword,value] [,keyword,value]
[,posltlon]

prefix:PARAMETER_ADD?

prefix:PARAMETER_ADD parameter [,keyword,value] [,keyword,value]
,position ,
parameter [,keyword,value] [,keyword,value]
,position

prefix
parameter
keyword

position

The prefix is limited to traces, i.e., T1, T2 T8.
The available parameters are listed below.
Some parameters have arguments which may be specified
bY keyword, value pairs following the parameter.
These are described below.
If an argument is not specified, the default value is used.
The position in which the parameter will appear in the
Extended Parameter display may optionally be specified as
P1, P2 P20, where the positions are located as follows:

P1 P11
P2 P12
P3 P13
P4 P14
etc.

If the position is not specified, the next available location
will be used.

PARAMETER_ADD (continued)

Mainframe Remote Commands

PAAD

General Parameters
parameter

DATA

DATE

DUR

FRST

LAST

PNTS

TIME

Time Domain Parameters
kevword

AMPL

AREA

BASE

definition + argumeqts

The data value at the left cursor. When this parameter is
used for histograming, and EVENTS PER WAVEFORM is
set to ALL, all of the data values between the cursors
are histogrammed.

Date of acquisition of the waveform.

For a single sweep waveform, dur is 0. For a sequence waveform,
dur is the time from the trigger of the first segment to the
trigger of the last segment. For a single segment of a sequence
waveform, dur is the time from the trigger of the previous
segment to the trigger of the current segmewnt. For a waveform
produced by a history function (e.g. AVGS), dur is the time from
the trigger of the first waveform accumulated to the trigger of the
last waveform accumulated.

Horizontal position of first (leftmost) cursor.

Horizontal position of last (rightmost) cursor.

Number of points between the cursors.

"13me of acquisition of the waveform.

definition + arguments

Top minus the base.

Sum of sampled values between the cursors times the
duration of a sample.

Lower of two most probable states. This is characteristic of
rectangular waveforms and represents the lower most
probable state determined from the statistical distribution
of data point values in the waveform.

5-93

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD

CYCL Number of pairs of transitions in the same direction.

DLY

DNL

"nme from trigger to the midpoint of the first transition.

Differential nonlinearity. Finds the maximum absolute difference
between adjacent measured code levels and the ideal code level.
The input is assumed to be a Digital to Analog Converter output.
The results are measured in terms of LSB’s.

keyword

STEPS

meaning

the number of ideal quantization levels.
Allowable values are I to 256

DUTY

FALL

DWELL TIME the amount of time that should be spent at
each plateau. Allowable values are
0to le6 l~s

Average duration above midpoint value as a percentage of
period.

Duration of the pulse waveform’s falling transition between
two user-specified thresholds, averaged for all falling
transitions between the cursors. The thresholds are specified
as a percentage of the amplitude.

kevword meaning

LOW lower threshold percentage of
amplitude
1 - 45 % default = 10°1o

HIGH upper threshold percentage of
amplitude
55 - 99 % default = 90%

FREQ Reciprocal of period.

5-94

Mainframe Remote Commands

PARAM ETER_ADD (continued) PAAD

INL

LMIN

LPP

Integral nonlinearity. Finds the maximum absolute difference
between each of the measured code levels and its ideal value.
The input is assumed to be a Digital to Analog Converter Output.
The results are measured in terms of percentage.

kevword meaning

STEPS the number of ideal quantization levels.
Allowable values are 1 to 256

DWELL~ME the amount of time that should be spent
at each plateau. Allowable values are
0to le6 p~s

Local maximum. Average of all local maxima between the
cursors.

ke.vword meaning

HYS hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5div

Local minimum. Average of all local minima between the
cursors.

kevwo rd meaning

HYS hysteresis controls feature finding

discriminates features from noise
.01 - 8.0 divdefault = 0.5div

Local peak to peak (Imax-lmin). Average for all pairs of local
maxima and minima between the cursors.

5-95

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD

L’rBP

LTBT

LTMN

LTMX

kevword meaning

HY$ hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

Local time between peaks. Average for all features between
the cursors.

kevword

HYS

meaniqg

hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

Local time between troughs. Average for all features between
the cursors.

keyword

HYS

meaning

hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

Local time at minimum. "time from trigger to first local
minimum between the cursors.

keyword

HYS

meanino

hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

Local time at maximum. "time from trigger to first local
maximum between the cursors.

keyword

HYS

meaning

hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

S-96

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD

LTOT

LTUT

MAX

MFJ~

MEDI

MIN

MODE

Local time over threshold. "time over a user-specified
percentage of the local peak to peak range, averaged for
all features between the cursors.

keyword

HYS

meaning

hysteresis controls feature finding
discriminates features from noise
.01 - 8.0 divdefault = 0.5 div

THR threshold percentage of peak to peak
0-100 % default = 50%

Local time under threshold. Time under a user-specified
percentage of the local peak to peak range, averaged for
all features between the cursors.

ke_vword

HYS

meaning

hysteresis controls feature finding
discriminates features from noise
.01 - 8,0 divdefault = 0.5 div

THR threshold percentage of peak to peak
0-100 % default = 50%

Maximum value of the waveform between the cursors.

Average or DC level of the waveform. If the waveform is
periodic, it is computed over an integral number of periods.

The median value is computed over an integral number of
periods if the waveform is periodic.

Minimum value of thewaveform between the cursors.

The mode is computed over an integral number of periods if
the waveform is periodic

597

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD
NBPH

NBPW

OVSN

OVSP

PER

PKPK

RISE

Narrow-band phase in degrees relative to the left cursor for a
user-specified frequency.

keyword

FRQ

meaning

Center Frequency
,001 - 1000000kHz
default 1 kHz

Narrow-band power in dbV (relative to 1V rms) for
user-specified frequency. It is computed over an integral
number of periods.

kevword meaning

FRQ Center Frequency
.001 - 1000000kHz
default lkHz

Overshoot negative- Base value minus the minimum sample
value, as a percentage of the amplitude.

Overshoot positive- Maximum sample value minus the top
value, as a percentage of the amplitude.

"lime of a full cycle averaged for all full cycles between the
cursors.

Difference between the maximum and minimum values.

Duration of the pulse waveform’s rising transition between two
user-specified thresholds, averaged for all rising transitions
between the cursors. The thresholds are specified as a
percentage of the amplitude.

kevword meaning

LOW lower threshold percentage of
amplitude

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD

HIGH
1 - 45 % default = 10%
upper threshold percentage of
amplitude
55 - 99 % default = 90%

RMS Square-root of sum of squares divided by number of points.
If the waveform is periodic, it is computed over an integral
number of periods.

SDEV Square-root of sum of squares of difference from mean,
divided by number of points-l. If the waveform is periodic, it is
computed over an integral number of periods.

TAFL "13me at fall time relative to trigger of the midpoint of the
first falling transition

TARS Time at rise relative to trigger of the midpoint of the first rising
transition

XAMN "time relative to trigger where the minimum sample occurred.

XAMX Time relative to trigger where the maximum sample occurred.

TOP

WID

Upper of two most probable states. This is characteristic of
rectangular waveforms and represents the higher most
probable state determined from the statistical distribution of
data point values in the waveform.

Width of the first pulse (either positive or negative), averaged
for similar pulses between the cursors.

Frequency Domain Parameters
parameter definition + arguments

MAX Maximum value of the waveform between the cursors
(i.e. amplitude of the largest frequency component).

TPWR Total power. Area under the power density spectrum.
This parameter only applies to spectra produced by the
processing function FFTPWD.

5-99

Mainframe Remote Commands

PARAMETER_ADD (continued)

XAMN

XAMX

Histogram Parameters
parameter

AMPL

BASE

FWHM

Frequency at minumum amplitude.

Frequency at maximum amplitude

FWXX

MAX

MAXP

MEAN

MEDI

MIN

MODE

PCTL

PAAD

definition + arguments

Amplitude. Top minus base.

The centroid of the leftmost significant peak.

Full width at half max. The width of the distribution
surrounding the mode including values which are at least 1/2
of the maximum value.

Full width at a user-specified percentage of the maximum
value.

ke.vword meaning
THR threshold percentage of maximum value

0 -100% default = 50%

Horizontal coordinate of rightmost non-zero bin.

Maximum population in any histogram bin (i.e.vertical value at mode).

Horizontal centroid of the distribution.

Horizontal median. Horizontal value of the midpoint of the
distribution.

Horizontal coordinate of leftmost non-zero bin.

Horizontal coordinate of bin with maximum population.

Percentile. The horizontal coordinate to the left of which lies a
user-specified percentage of the distribution lies to the left.

5-100

Mainframe Remote Commands

PARAME TER_ADD (continued) PAAD

Examples:

keyword meaning

THR threshold percentage of distribution
0 - 99 % default = 95%

PKPK Peak-to-peak. Horizontal difference between the maximum
and minimum values.

PKS The number of peaks in the distribution.

SDEV

TOP

Histogram root mean square. Square-root of sum of squares
divided by number of values, computed on the distribution.

Histogram standard deviation. Square-root of sum of squares
of difference from mean, divided by number of values - 1,
computed on the distribution.

The Centroid of the rightmost significant peak

TOTP

XAPK

Total population in the histogram.

The horizontal mean of the user-specified peak. The peak is
specified by number, where the peaks are sorted by
decreasing area above the background.
(i.e. the peak with the largest area is number 1,
the next largest peak is number 2, etc.)

keywo rd meaning

PEAK number of the peak
1 - 100 default = 1

TI:PAADMAX, P1 Adds the parameter MAX to be computed on trace 1
and displayed in the upper left position.

T1 :PAAD RISE,LOW,20,HIGH,80,P11
Adds the parameter RISE to compute the 20% - 80%
rise time of trace 1. The parameter will be displayed
in the upper right position.

T1 :PAAD? Queries the list of parameters for trace 1.

5-101

Mainframe Remote Commands

PARAMETER_ADD (continued) PAAD

T1 :PAAD MAX, P1,RISE,LOW,20,HIGH,80,P11
Response indicates the identity and position of all
the parameters calculated for trace 1 when
Extended Parameters are enabled

See Also: CURSOR_MEASURE, CURSOR_SET, PARAMETER_DEL, PARAME-
TER_CLR, PARAMETER_VALUE

5-102

PARAMETER_AVG

Mainframe Remote Commands

PAAV

Purpose:

Command:

Query.

Response:

Argument:

Examples:

Turns waveform parameter averaging on or off.

PARAMETER_AVG argument

PARAMETER_AVG?

PARAME’rER_AVG argument

The argument specifies whether to turn averaging on or off:
ON
OFF

PAAV ON Tums on parameter averaging.

5-103

Mainframe Remote Commands

PARAMETER_CLR PACL
Purpose:

Command:

See Also:

Deletes all parameters for all traces in the Extended Parameter display.

PARAMETER_CLR

PARAM ETER_ADD, PARAM ETER_DEL

.$-104

Mainframe Remote Commands

PARAMETER_DEL PADL

Purpose:

Command:

Arguments:

Examples:

See Also:

Deletes a parameter from the list of parameters calculated for the specified
trace when the displayed cursor type (as set by CURSOR_MEASURE)
Extended Parameters. If no parameter is specified in the command, then all
parameters for the specified trace are deleted.

prefix:PARAM ETER_DEL[parameter,[keyword,value,] [keyword,
value,]..., parameter, [keyword,value,]
[keyword,value,]]

prefix
parameter

keyword

The prefix is limited to traces T1, T2 T8.
The available parameters are listed in the description of the
PARAMETER_ADD command on p.5-86
Some parameters have arguments which may be specified by
keyword,value pairs following the parameter. These are
described in the list of parameters. If an argument is specified,
only those occurrences of the parameter with the same
argument will be deleted. If an argument is not specified,
all occurrences of the parameter will be deleted.

TI:PADL MAX Deletes the parameter MAX from the list of
parameters to be computed on trace 1.

T1 :PADL PCTL,THR,90 Deletes the parameter PCTL (percentile)
with 90% threshold from the list of parameters
for trace 1. Other PCTL parameters with
different thresholds will not be deleted.

T1 :PADL PCTL Deletes all occurrences of PCTL with any
threshold from the list of parameters for
trace 1.

T1 :PADL Deletes all parameters for trace 1.

PARAME3ER_CLR, PARAMETER_ADD

5-105

Mainframe Remote Commands

PARAMETER_VALUE? PAVA?

Purpose: Returns the current value(s) of the waveform parameter(s) for the specified
trace. Any parameter on any trace may be queried, whether or not the
7200A is currently computing that parameter. If no parameter is specified In
the query, then the values of all the currently specified Extended Parame-
ters for the specified trace are returned. The parameter is calculated on
the screen of the trace that is delineated by the Extended Parameter cur-
sors (as set by CURSOR_SET).

Query:. prefix:PARAMETER_VALUE[parameter,[keyword,value,] [keyword,
value,]..., parameter,[keyword,value,]
[keyword,value,]]

Response: prefix:PARAMETER_VALUE parameter,[keyword,value,] [keyword,value,]
parameter-value,state ... parameter,[keyword,value,][keyword,value,] pa-
rameter-value,state

Arguments: prefix
parameter

keyword

parameter-value

The prefix is limited to traces T1, T2 T8.
The available parameters are listed in the description
of the PARAMETER_ADD command on p.5-86.
Some parameters have arguments which may be
specified by keyword,value pairs following the
parameter.
These are described in the list of parameters. If
an argument is not specified, the default value is used.
The decimal value and units of the parameter

5-106

Mainframe Remote Commands

PARAMETER_VALUE? (continued) PAVA?

Examples:

Note:

See Also:

state Indicates additional information about the parameter
value as follows:

state parameter computation state

T1 :PAVA? MAX

OK
AV
PT
IV
NP
LT
OF
UF
OU
GT
UD

determined without a problem
averaged over several (up to 500 periods)
computed over integral number of periods
invalid value (insufficient data provided)
not a pulse waveform
actual value is less than given value
signal partially in overflow
signal partially in underflow
signal partially in overflow and underflow
actual value is greater than given value
signal contains undefined points

Requests the value of the parameter
MAX on trace 1.

T1 :PAVA MAX,4.3mV, OK Response indicates the MAX value is 4.3mV;
value was determined without a problem.

T2:PAVA? RISE,LOW,15,HIGH,85
Requests the 15% - 85% rise time of trace 2.

T2: PAVA RISE,LOW,15,HIGH,85,3.6NS,AV
Response indicates that the 15% - 85% rise
time of trace 2 is 3.6ns; this value was
determined by averaging all the rise times
between the cursors.

The parameters are calculated on the section of the trace that is delineated
by the Extended Parameter cursors (as set by the CURSOR_SET com-
mand). If the trace is a sequence waveform, the parameters are calculated
on the first segment between the cursors (i.e., the segment in which the left-
most cursor is located).

PARAMETER_ADD, PARAMETER_DEL, PARAME’rER_CLFL
CURSOR_SET

5-107

Mainframe Remote Commands

PER_CURSOR_SET PECS
Purpose:

Command:

Query:.

Response:

Arguments:

Positions any one of the six independent cursors at a given screen location
in persistence mode. Cursor positions are specified relative to a grid. The
positions of the cursors can be modified or queried even if the required
cursor is not currently displayed on the screen, or persistence mode is off.

prefix:PER_CURSOR_SET keyword, poeltlon,...,keyword,poeRlon

preflx:PER_C URSOR_SET?keyword,keyword,keyword,...

prefix:PER_CURSOR_SET keyword,position keyword,position

prefix The prefix is limited to traces, i.e., I"I, T2 , "1"8

keyword,position keyword, position

Cursor Type kevword position

Vertical Absolute VABS -4 to 4 DIV
Vertical Relative VREF, VDIF -4 to 4 DIV
Horizontal Absolute HABS 0 to 10 DIV
Horizontal Relative HREF, HDIF 0 to 10 DIV

The four cursor types measure the following:

Vertical Absolute

Vertical Relative

Horizontal Absolute

Horizontal Relative

measures the absolute vertical value at a
given point.

measures the difference between vertical
positions of the cursors of a trace(s).

measures the absolute horizontal position at a
given point on the trace(s).

measures the difference between the horizontal
positions of two Horizontal cursors.

5-I08

Mainframe Remote Commands

PER_CURSOR_SET (continued) PECS

Examples:

Note:

See Also:

TI:PECS HABS, 5 Races the horizontal absolute cursor in the center of
the waveform.

TI:PECS? HREF Requests the position of the horizontal reference
cursor on trace 1.

"I"I:PECS HREF,2 The response indicates the position is two divisions
to the right of the grid’s left edge.

Keywords ending in REF refer to a reference cursor which is a line of
alternating dots and dashes. Keywords ending in DIF correspond to the
difference cursor which contains dashes.

A command argument has two parts: Keyword followed by position. Any
number of arguments may be used in any order to change or query
individual settings.

With query, if no keyword is specified, the positions of all cursors are re-
turned.

When in XY mode with persistence, use the XY cursors to make measure-
ments.

CURSOR_MEASURE, PER_CURSOR_VALUE, PERSIST,
XY_CURSOR_SET

5-109

Mainframe Remote Commands

PER_CURSOR_VAI UE? PECV?.

Purpose: Returns the values of the specified cursor measurement(s) for a given trace
on the persistence display. The corresponding units accompany each re-
ported value.

Query:.

Response:

Arguments:

prefix: PER_CURSOR_VALUE? keyword,keyword,...,keyword

prefix:PEP_CURSOR_VALUE keyword,value,value,keyword,value

prefix The prefix is limited to traces, i.e., T1,T2 1"8.

keyword,...,keyword

keyword
VABS Vertical

Absolute
VREL Vertical

Relative
HABS Horizontal

Absolute
HREL Horizontal

Relative

value

meanina
measures the absolute vertical value at a
given point
measures the difference between the
vertical positions of two cursors
measures the absolute horizontal position
of a point on a trace.
measures the difference between the
horizontal positions of two horizontal
cursors

indicates the cursor measurement results with the correct units.

Examples: T1 :PECV? HREL

T1 :PECV HREL,21.3 MS

Requests the measurement for
Horizontal relative cursor positions.

indicates the difference between the
co-ordinates of the two Horizontal
cursors.

T1 :PECV? VABS

T1 :PECV VABS, -24 mV

Requests the measurement for the
Vertical absolute cursor position.

Notes: If no keywords are specified, the values of all measurements are returned.

5-110

Mainframe Remote Commands

PER_CURSOR_VAIJUE? (continued) PECV?

See Also:

Any number of cursor types can be specified in the argument. Their cursor
names followed by the value(s) and units are returned in the same order
requested.

To measure a cursor value, its cursor type need not be selected by the
CURSOR_MEASURE command.

If the cursor is not on the specified trace or the trace is not valid, the value
UNDEF is returned.

When in XY mode with persistence, use the XY cursors to make measure-
ments.

CURSOR_MEASURE, PER_CURSOR_SET, PERSIST,
XY_CURSOR_VALUE

5-111

Mainframe Remote Commands

PERSIST

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

PERS

Enables or disables the persistence display mode.

PERSIST ==tam

PERSIST?

PERSIST state

state ON Enables persistence display.
OFF Disables persistence display.

PERS ON Enables persistence display mode.

PERS? Queries whether persistence is enabled or disabled.

PERS ONReports that persistence display is enabled.

If persistence is turned on when XY mode is on, successive sweeps of the
X vs Y plot will be overlaid.

PERSIST_SETUP, XY_DISPLAY

5-112

PERSIST_SETUP

Mainframe Remote Commands

PESU

Purpose:

Command:

Query.

Response:

Argument:

Examples:

See Also:

Sets the number of sweeps used in the persistence display and XY persist-
ence.

PERSIST_SETUP SWEEPS,value

PERSIST_SETUP?

PERSIST_SETUP SWEEPS,value

An argument consists of a keyword followed by it’s value.

Kevword Meaninina:Value

SWEEPS Number of sweeps to be retained in the
persistence display.
Valid values are 2 - 200 (in 1-2-5 sequence),
INFINITE or AUTOSTOP.

PESU SWEEPS,5 Sets persistence display to retain the last 5 sweeps.

PESU? Queries current persistence setup.

PESU SWEEPS,10 Reports that persistence display mode will retain the
last10 sweeps.

PERSIST, XY

5-113

Mainframe Remote Commands

PROG_ARG PRAR

Purpose:

Command:

Set or retrieve a string. The string is intended to be used to communicate
data from one ICL program to another.

PROG_ARG string

Query: PROG_ARG?

Arguments: string: A quoted string of less than 80 characters.

Examples: PROG_ARG Any text. Stores the string Any text. in a fixed location.

Notes:

See Also:

PRAR? Returns the previously stored string Any text.

An ICL program may recall another ICL program using the PROG_SETUP
and PROG_RECALL remote commands. The new program is started as
soon as it is loaded; this is the way programs can be chained together.
The PROG_AI~ command and its query can be used to communicate a
small amount of information between chained programs.

PROG._SET_UP, PROG_RECALL

5-114

Mainframe Remote Commands

PROG_CLEAR PRCL

Purpose:

Command"

Example:

Erases the current program. If the program setup screen is displayed, the
program will be erased from the screen. This command has no effect on
any copy of the program which may have been stored on disk.

PROG_CLEAR

PRCL Clears the current program.

5-115

Mainframe Remote Commands

PROQCOMPILE PRCO
Purpose: compile a program. The query form compiles a program and returns a re-

sult string indicating erros, if any.

Command: PROG COMPILE

Query. PROG COMPILE?

Response: PROG COMPILE result

Examples: PRCO Compiles a program as specified by the current value of hte PROG
SETUP parameters DISK and IFILE.

PRCO?

PRCO OK

Requexts the currently specified program to be compiled and
returns a string Indicating whether any erros were found.
Indicates that the program compiled successfully.

PRCO?
PRCO

Compile the currently specified program.
"Expected variable at line 6"
Indicating there is an error in the program. The error message
returned as a string, reports that a variable is missing is in line 6.

See Also: PROG_SETUP

5-116

Mainframe Remote Commands

PROG_LIST PRLI
Purpose:

Query:.

Example:

See Also:

Report the list of program files on the currently selected disk.

PROG_LIST?

PRLI?

PRLI BABYSIT DEMO

Requests the list of possible input files on the
currently selected disk.
Reports that programs BABYSIT and DEMO are
available.

DIRECTORY_LIST

5-117

Mainframe Remote Commands

PROQMODE PRMO
Purpose:

Command:

Query.

Response

Arguments:

Examples:

See Also:

Sets the operating mode for program. This command can be used to begin
the learn process or start a program executing.

If the program setup screen is displayed when this command is used to
change the mode to LEARN or RUN, the main screen will be displayed.

If a program currently exists when this command is used to set the mode
to LEARN, the current program will be lost.

PROG_MODE mode

PROG_MODE?

PROG_MODE mode

mode choice of OFF, LEARN, or RUN

PROG_MODE LEARN Begins the learn process.

PRMO RUN Begins execution of the current program at the
speed specified by the PROG_SETUP SPEED
parameter.

PRMO? Requests the current state.
PFffVlO OFF Reports that the current operating mode for Program is off.

PROG_SETUP

5-118

PROG_RECAI L

Mainframe Remote Connnands

PRRC

Purpose:

Command:

Example:

See Also:

Recall a program from a disk file.

PROG_RECALL

PRRC Recalls a program as specified by the current values of the
PROG_SE’rUP parameters DISK and IFILE.

PROG_SETUP

5-119

Mainframe Remote Commands

PROQSETUP PRSU

Purpose: Set up parameters for the PROG_MODE, PROG_RECALL, and
PROG_STORE commands.

Command:

Query:.

Response:

Arguments:

PROG_SETUP keyword,value [,keyword,velue ...]

PROG_SETUP? keyword,value [,keyword,value ...]

PROG_SETUP keyword [,keyword ...]

SPEED: Choice of FAST, MEDIUM, and SLOW.

SLOW

MEDIUM

FAST

DISK:

Executes the program one command per second, and
displays the text of each command as it is executed.

Executes the program with a small delay after each
command. This gives the display a chance to be
updated, so you can see the effect of individual
commands. Commands are not displayed.

Executes the program without any artiflcal delays,
and does not display commands.

Choice of INTERNAL and FLOPPY.

INTERNAL Selects the internal disk as the one used for both the
PROG_RECALL and PROG_STORE commands.

FLOPPY Selects the floppy disk as the one used for both the
PROG_RECALL and PROG_STORE commands.

IFILE: Specifies the name of the program recalled by the next
PROG_RECALL command. Choices are determined by the
programs on the currently selected disk.

5-120

Mainframe Remote Commands

PROG_SETUP (continued) PRSU

Examples:

OFILE: Specifies the name of the program stored by the next
PROG_STORE command. The value should be a valid file name
without extension. (One to eight letters and digits, beginning
with a letter.)

PROG_SETUP SPEED, FAST Sets execution speed to FAST.

PRSU DISK,FLOPPY, IFILE,DEMO Specifies that the next PROG_RECALL
command should recall the program
DEMO from the floppy disk.

PRSU DISK, INTERNAL, OFILE,TEST Specifies that the next
PROG_STORE command should
store the program in the file TEST
on thei nternal disk.

PRSU? DISK, IFILE,OFILE Requests the current values of the
DISK, IFILE, and OFILE parameters.

PROG_SETUP DISK,INTERNAL,IFILE,DEMO,OFILE,TEST

PRSU? Requests all parameters.
PROG_SETUP DISK, INTERNAL,IFILE,DEMO,OFILE,TEST, SPEED,FAST

Notes:

See Also:

If both the DISK and IFILE keywords are given in the same PROG_SETUP
command, the DISK keyword should be specified first.

PROG_MODE, PROG_RECALL, PROG_STORE, PROG_LIST

5-121

Mainframe Remote Commands

PROG_STORE PRST
Purpose:

Command:

Example:

See Also:

Stores a program in a disk file. Any file on the specified disk with the same
name will be replaced.

PROG_STORE

PRST Stores a program as specified by the current values of the
PROG_SE’I’UP parameters DISK and OFILE.

PROG_SETUP

5-122

Mainframe Remote Commands

PROTECT_MODE PRMD

Purpose:

Command:

Query:.

Arguments:

Default:

Turns ON/OFF Protected Mode. When PROTECT_MODE is ON, data will
be acquired and stored in non-volatile protected memory. The plug-ins will
not re-arm after the data is acquired. When PROTECT_MODE is OFF, the
system operates normally.

PRMD enable

PRMD?

enable - ON or OFF

OFF

5-123

Mainframe Remote Commands

PRW_ON_STATE PWRO
Purpose:

Command:

Query.

Response:

Argument:

Selects the state of the Trig Enable at power on. When the
PWRO_ON_STATE is RESTORED, the Trig Enable will be restored to it’s
prior to losing power. If the Trig Enable was extemally enabled when power
was interrupted, the Trig Enable will be Internally enabled. When the
PWRO_ON_STATE is DEFAULT, the Trig Enable will be waiting for an exter-
nal enable at power on.

PWRO state

PWRO?

PWRO state

state - DEFAULT or RESTORED

5-]24

Mainframe Remote Commands

QYR?
Purpose:

Query.

Response:

Argument:

Example:

See Also:

Reads and then clears the contents of the Query error Register (QYR). The
QYR queue identifies the most recent query error. A query error occurs
when a query or its response is not read by the controller according to the
IEEE-488.2 Message Exchange Protocol. For example, if the controller
sends a query before it reads the response to the previous query, the pre-
vious response is flushed, a query error is logged, and the second re-
sponse is sent.

The QYR is a queue which contains a unique encoded value. The value cor-
responds to the most recent query error.

Clearing the QYR register also clears the QYB summary message bit
(bit # 2) of the standard Event Status Register (ESR) and the effect could
propagate to the main Status Byte (STB).

QYR?

QYR value

value Corresponds to an error such as:
7200A is read with no data in output queue
data in output queue is lost
deadlock: input and output buffers full
controllerreads before sending a complete query
controller sends new command before reading last query

A listing of all encoded values with their meanings is found in Appendix A.

QYR?
QYR 2

Read and clear the QYR
Response indicates Interrupted Action; that is, the controller sent
a command or query without fully reading the response to a
previous query.

ALST?, ESE, * ESR?, * STB?

5-125

Mainframe Remote Commands

RECAIJL REC
Purpose:

Command:

See Also:

Performs the waveform recall operation previously configured by RE-
CALL_SE’I1JP.

RECALL

RECALL_SETUP, STORE_SETUP, STORE, DIRECTORY_LIST

5-]26

RECAI L_PANELS

Mainframe Remote Commands

RCPN
Purpose:

Command:

Query:.

Response:

Arguments:

Examples:

Notes:

See Also:

Recalls panel settings from either floppy disk or internal disk.

RECALL_PANELS keyword,value,keyword,value

RECALL_PANELS?

RECALL_PANELS keyword,value,keywo rd,value,...keyword,value

An argument consists of a keyword followed by its value. Any number of
arguments in any order may be used to change individual settings.

Keyword Meaning :Value

DISK Disk from which panel settings will be recalled:
INT internal disk
FLOPPY floppy disk

FILE Filename from which panel settings will be recalled:
filename must not include an extension.

The 7200A automatically adds .PNL

RCPN DISK, INT, FILE,’MIKE" Recalls panel settings from the file
MIKE.PNL on the internal disk.

RCPN? Requests the current defaults for the
RCPN command

RCPN DISK, INT, FILE,"PANEL" Reports that the panel settings for file
PANEL will be recalled from the internal
disk.

If no arguments are given, the panel is recalled from the file last specified.

STORE_PANELS, DIRECTORY_LIST

5-127

Mainframe Remote Commands

RECAI,L_SETUP RCST
Purpose:

Command:

Query:.

Response:

Arguments:

Configures the waveform recall operation.

RECALL_SETUP keyword,value,keyword,value,...keyword,value

RECALL_SETUP?

RECALL_SETUP keyword,value,keyword,value,...keyword,value

An argument consists of a keyword followed by its value. Any number of ar-
guments in any order may be used to change individual settings.

Ke.vword Meaning:Value

M1,M2,...M8 Memory to which waveform will be recalled
filename.XXX Filename of floppy disk

file containing waveform
to be recalled to memory.

TI= M1,T2= M2,...T8= M8 Memory and trace to which waveform will be re-
called. The waveform will be recalled to the

specified memory. The trace equation of the
specified trace will be changed to Tx= Mx and
the trace will be turned on.

filename.XXX Filename of floppy disk
file containing waveform
to be recalled to memory.

Filename extension auto increment
OFF All recall operations read the

same file.
ON For each recall operation, the

numedc extension of the
previously read file is incremented
to the next file on the disk.

5-128

Mainframe Remote Conunands

RECAI L_SETUP (continued) RCST
Examples: RCST MI,’TRACE1.000",T3= M3,’LASER.014"

Configures the waveform recall operation to:
recall the waveform in file TRACE1.000 to memory M1;
recall the waveform in file LASEFL014 to memory M3, change
the trace equation of trace 3 to be T3= M3, and turn on trace 3

RCST M1 ,’",M3,’LASER.000",FINC,ON
Configures the waveform recall operation to:

not recall anything to memory M1;
recall the waveform in file LASER.000 to memory M3

Filename extension autoincrement is enabled so that subsequent
recall operations will search for the next file on the disk with fllename
LASER.XXX.

Note:

See Also:

RECALL_SETUP configures the recall operation but does not initiate it.
The actual recall operation does not occur until the RECALL command is
issued.

RECALL, STORE_SETUP, STORE, DIRECTORY_LIST

Mainframe Remote Commands

RECORD_TRACES
Purpose:

Command:

Query.

Response:

Argument:

Examples:

See Also:

RECT

Turns record traces mode on or off.

RECORD_TRACES argument

RECORD_TRACES?

RECORD_TRACES argument

The argument specifies whether to turn record traces mode on or off:
ON
OFF

RECT ON Tums on record traces mode.

REPLAY_TRACES

5-130

REFERENCE_CLOCK

Mainframe Remote Commands

RCLK

Purpose:

Command:

Query.

Response:

Arguments:

Examples:

Selects the system clock used as the reference for the plug-in timebases.

REFERENCE_CLOCK arg

REFERENCE_CLOCK?

REFERENCE_CLOCK clock

clock

INT
EXT

Selects the 7200A clock.
Selects an externally applied 10 MHz clock. The external clock
signal is applied to the back of the 7200A.

REFERENCE_CLOCK EXT Sets the reference clocks for all plug-ins to
the user supplied clock.

REFERENCE_CLOCK?

REFERENCE_CLOCK INT

Queries which clock is being used as
a reference.
Reports that the internal reference clock is
selected.

5-131

Mainframe Remote Commands

REMOTE

Purpose:

Command:

Examples:

Note:

See Also:

REM
Place the 7200A into Remote mode. In Remote mode the 7200A responds
only to remote commands and queries; all front panel keys on the main-
frame and plug-in(s) are disabled, except for the Go To Local softkey lo-
cated in the lower left part of the screen. Pressing this key will restore front
panel control.

REMOTE

REM Places the 7200A into Remote mode and disables front panel
control

The 7200A also switches to Remote mode if it is in Local mode and the
computer addresses the 7200A to Listen with REN (Remote Enable) as-
serted. However, this will only happen if the GPIB interface had been set to
the Local state. Pressing the GO To Local key places the 7200A into Local
mode but has no effect on the GPIB interface. The GPIB interface is set to
Local mode at any time by deasserting PEN. Sending the GTL interface
command after addressing the 7200A to Listen will also put it into Local
mode.

Sending REMOTE will always place the 7200A into Remote mode. If RE-
MOTE is sent with REN asserted, the GPIB interface is put into Remote
mode. If REMOTE is sent with PEN deasserted, the GPIB interface is put
into Local mode.

See IEEE-488.1 (section 2.8) for more details concerning GPIB state transi-
tions.

LOCAL, LOCKOUT

5-132

REM CTRL

Mainframe Remote Commands

RCTL

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

selects the port (GPIB or RS232) from which the 7200A will accept remote
commands.

REM_CTRL port

REM_CTRL?

REM_CTRL port

port

REM_CTRL GPIB

REM_CTRL?

REM_CTRL RS232

Care should be used when issuing this command remotely since it immedi-
ately changes the host port.

GPIB_ADDRESS, COMM_RS232

either GPIB or RS232

Sets the remote host port to GPIB

Queries the 7200A for the current remote host port.

reports that the host port for the 7200A is RS232

5-133

Mainframe Remote Commands

REPlAY_TRACES

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

REPT

Provides access to traces previously recorded in Record Traces mode.

REPLAY_TRACES argument

REPLAY_TRACES?

REPLAY_TRACES argument

ON start replay traces
OFF stop replay traces
NEXT step forward in buffer of recorded traces
PREV step back in buffer of recorded traces

REPT ON Start replay traces.

REPT PREV Step to previously recorded traces.

Query returns only ON or OFF.

RECORD_TRACES

5-D4

SCSI_ID?

Mainframe Remote Commands

SCID?

Purpose:

Query:.

Response:

Example:

Thsis is a query function to return the SCSI id of the 7200A.

SClD?

SCID value

SCID?
SCSI_ID 7

Request SCSI id of the 7200A
Returns current setting of ID

5-135

Mainframe Remote Commands

SELECT

Purpose:

Command:

Query..

Response:

Argument:

Examples:

See Also:

SEL

Selects the trace that is acted upon when performing the various display
commands and moves the selection frame to that trace. If the selected
trace is not on, an error is reported.

prefix:SELECT

prefix:SELECT? state

prefix:SELECT

prefix
state

T1 :SEL

SEL?
"I"I:SEL ON

The prefix is limited to traces, i.e., T1, T2 T8.
ON If it is the selected state.
OFF If it is not the selected state.

Selects trace 1 as the SELECT’ed trace.

Requests the identity of the selected trace.
Reports that trace 1 is the selected trace.

TRACE, CURSOR_MEASURE

5-136

Mainframe Remote Commands

STOP
Purpose:

Command:

Note:

See Also:

Forces the end of the current acquisition. Changes the acquisition state
from READY to TRIGGERED. If the Trigger Mode is AUTO or NORM, it will
change the mode to SINGLE to prevent further acquisition.

STOP

In sequence mode, the acquisition process is halted.

INR?, INE, *TRG, WAIT

5-137

Mainframe Remote Commands

STORE

Purpose: Performs the trace storage operation previously configured by
STORE_SETUP.

STO

Command: STORE

Note:

See Also:

Only those traces which are displayed (and which have been configured by
STORE SETUP) will be stored.

STORE.SETUP, RECALL_SETUP, RECALL, DIRECTORY_LIST

5-138

STORE_PANELS

Mainframe Remote Commands

STPN

Purpose:

Command:

Query

Response:

Arguments:

Examples:

Note:

See Also:

Stores current panel settings to either floppy disk or internal disk.

STORE_PANELS keyword,value,keyword,value

STORE_PANELS?

STORE_PANELS keywo rd ,value,keywo rd,value,...keywo rd,value

An argument consists of a keyword followed by its value. Any number of ar-
guments in any order may be used to change individual settings.

Keyword Meaning:Value

DISK Disk to which panel settings file will be stored:
INT internal disk
FLOPPY floppy disk

FILE Filename to which panel settings will be stored:
filename must not include an extension.

The 7200A automatically adds .PNL

STPN DISK, INT, FILE,’IIVlIKE" Store panel settings to the file MIKE.PNL
on the internal disk.

STPN? STPN DISK, INT, FILE, EXP1"

If no arguments are given, the panel is saved to the file last specified.

RECALL_PANELS

5-139

Mainframe Remote Commands

STORE_SETUP STST

Purpose: Configures the trace storage operation.

Command: STORE_SETUP keyword,value,keyword,value,...keyword,value

Query:.

Response:

Arguments:

STORE_SETUP?

STORESETUP keyword,value,keyword,value,...keyword,value

An argument consists of a keyword followed by its value. Any number of
arguments in any order may be used to change individual settings.

Keyword Meaning:Value

T1 ,T2,...1"8 Trace to be stored
DIS
FILE

M1,M2,...M8

3"1= M1,T2= M2,...T8= M8

Disable storage of trace.
Store trace to floppy disk.
FIlename is equal to trace
label plus filename extension
Store trace to specified
memory.
Store trace to specified
memory and change
specified trace equation
to Tx= Mx.

FEXT

FINC

Filename extension for storing to floppy disk:
000,001,...999

Filename extension autoincrement
OFF All trace storage operations

overwrite the same file.
ON Each trace storage operation

creates a new file by
incrementing the extension
of the previous file.

5-140

Mainframe Remote Commands

STORE_SETUP (continued) STST

Examples:

Note:

See Also:

STST T1,FILE,FEXT,027,T2,M1 ,T5,TT= M7
Configures the trace storage operation to:

store trace 1 to a floppy disk file with filename equal to the trace label
plus extension .027;
store trace 2 to memory M1;
store trace 5 to memory M7, change the trace equation of trace 7
to be T7= M7, and turn on trace 7.

STST T1,DIS,T4,FILE,FEXT,000,FINC,ON
Configure the trace storage operation to:

disable storage of trace 1;
store trace 4 to a floppy disk file with filename equal to the trace label
plus extension .000;

Filename extension autoincrement is enabled so that subsequent
storage operations will increment the filename extension before storing to
floppy disk.

STORE_SETUP configures the storage operation but does not initiate it.
The actual store operation does not occur until the STORE command is
issued.

STORE, RECALL_SETUP, RECALL, DIRECTORY_LIST, TRACE_LABEL

5-141

Mainframe Remote Commands

TEMPLATE? TMPL?

Purpose: Produces a copy of the template which formally describes the various logi-
cal entities making up a complete waveform. In particular, the template de-
scribes in full detail the variables contained in the descriptor part of a
waveform. Refer to Section 3: Waveform Transfer for further Information.

Query. TEMPLATE?

Response: See Section 3: Waveform Transfer for a sample template listing.

Note: The template is transmitted as an ASCII string.

See Also INSPECT, WAVEFOFWl

5-142

Mainframe Remote Commands

TIMEBASE_LOCK TBLK
Purpose:

Command:

Query:.

Response

Arguments:

Examples:

Forces all plug-ins to use the same timebase. Any changes to the timebase
controls on one plug-in will also change the other plug-ins to the same set-
ting. If plug-ins of different capabilities are used, only timebase settings
common to all plug-ins can be selected. If any timebase control setting is
not common to all plug-ins, the plug-in timebases cannot be locked.

TIMEBASE_LOCK state

TIMEBASE_LOCK?

TIMEBASE_LOCK state

state [ON / OFF] Turn locking feature on or OFF

TIMEBASE_LOCK ON Locks all plug-ins to the timebase setting of the
leftmost plug-in.

TIMEBASE_LOCK?

TIMEBASE_LOCK OFF

Queries whether the timebases are locked or
independent.
Reports that the timebases are independent.

5-143

Mainframe Remote Commands

TRACE

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Notes:

See Also:

TRA

Turns on or off the display of the specified trace. When a trace is turned on,
it becomes the selected trace.

prefix:TRACE state

The prefix is limited to traces, i.e., 1"1, T2 T8.

prefix: TRACE?

prefix:TRACE state

stateON
OFF

causes the trace to be on the display
takes the trace off the display

T1 :TRA ON Tells the 7200A to display trace 1.

T2:TRA?
T2:TRA OFF

Asks if trace 2 is displayed.
Response to query indicates that trace 2 is not being
displayed.

When a trace is turned off, all processing for that trace is discontinued un-
less that trace is used to define another trace (eg. if 3"3 = T2 + T1 and 3"1
is turned off, the processing of T1 will continue since it is needed to
compute T3).

DEFINE, SELECT, XY_ASSIGN

5-144

TRACE_ANOT

Mainframe Remote Commands

TRAA
Purpose:

Command:

Query:.

Response:

Arguments:

Example:

This command allows the user to annotate a trace with up to 10 different
text strings. The position of the text can also be specified.

prefix: TRACE_ANOTnumber,keyword,value[,keyword,value]...
[,keyword,value]

prefix: TRACE_ANOT?. number

prefix: TRACE_ANOTnumber,keyword,value,keyword,value,
keyword,value,keyword,value

prefix The prefix is limited to traces, i.e., T1 ,T2,...T8.
number The text string that the keyword,value pairs apply to.

The number can be 1,2,...10.

keyword meaning:value

XPOS horizontal position of the lower left corner of the text string in the
range: -1E30 to 1E30

YPOS vertical position of the lower left corner of the text string in the
range: -1E30 to 1E30 followed by the vertical units of the traces.

STATE selects if text string is displayed: ON or OFF.

TEXT the string to be displayed, it can be up to 15 characters and
must be surrounded by quotes.

T1 :TRAA 2,XPOS,50E-9,YPOS,0.2,STATE,ON,’I--P__XTI
My display the words "My Point" on the point of the grid
corresponding to 50 ns and 200mV. It is the second string
for trace 1.

T2:TRAA? 3 requests the arguments of the third string of trace 2.

T2:TRAA 3, XPOS,1.75E-, YPOS,1.55,STATE,ON,TEXT,"1’mer"
reports that the string =l’mer" is displayed at the point on the
grid that corresponds to 1.75 las, 1.55V

5-145

Mainframe Remote Commands

TRACE ANOT (continued) TRAA
Note: When a waveform is read out of the 7200A using the WAVEFOFffVl or IN-

SPECT commands, all strings which are displayed are included in the TEXT
block of the waveform.

See Also: WAVEFORM, INSPECT

5-146

Mainframe Remote Commands

TRACE_LABEL TRI B

Purpose:

Command:

Query:.

Response:

Arguments:

Default:

Examples:

Note:

See Also:

Defines an application specific trace identifier for annotation and disk stor-
age. If the default label is selected, the trace equation annotates the trace
on the Main Screen. Selecting a label other than the default will force the la-
bel to annotate the trace on the Main Screen. The trace label is also used
as the fllename when storing traces to floppy disk.

prefix: TRACE_LABEL label

prefix: TRACE_LABEL?

prefix: TRACE_LABEL label

prefix The prefix for this command is limited to traces, i.e., T1, "1"2 T8.

label A string argument that must be a valid DOS filename; that is, it
cannot begin with a number and cannot be more than
8 characters long.

Trace1 for trace 1, Trace2 for trace 2, and so on

TI:TRACE_LABEL Trecel sets the trace label for trace 1 to Trace1

T8:TRACE_LABEL?

T8:TRACE_LABEL Trace8

requests the trace label for trace 8.

Filenames are case insensitive. That is, Trace1 is the same as TRACE1.

DEFINE, DEFINE_REPLAY, STORE

5-147

Mainframe Remote Commands

TRANSFER_FILE TRFI
Purpose: Transfer panel setup and ICL program files between the host computer and

the 7200A. The command form transfers a file from the host to the 7200A.
The query form transfers a file from the 7200A to the host.

Command: TRANSFER_FILE disk, file, data

Query.. TRANSFER_FILE? disk, file

Arguments: disk: choice of INT and FLOPPY

INT Selects the internal disk.

file:

FLOPPY Selects the floppy disk.

Specifies the file to be transferred. Filenames are made of two parts,
separated by a dot. The first part is the name, and the second is the
extension.

The name is one to eight characters long, and begins with a letter.
The remaining characters may be letters, digits, or underscores.

The extension specifies which type of file is being transferred.
Choices include:

data

COL
MON
PNL
SRC
APD

color scheme files for color display
color schemes for monochrome display
Panel setup file
ICL program source file
ICL program data file

Contains the block format specification followed by the data
to be transferred to the file.

Examples: TRFI INT,’~TART.PNL",# 9nnnnnnnnn< data>
creates the ICL panel setup file =START.PNL"
on the internal disk.The data are given in the definite
length block format. "n" is one of the nine bytes when
taken together indicate the total number of bytes of data.

5-148

Mainframe Remote Commands

TRANS FER_FII JE (continued) TRFI

Notes:

See Also:

TRFI FLOPPY,"PROG.SRC",# 0< data> < end>
creates the ICL program source file "PROG.SRC"
on the floppy disk. The data are given in the indefinite
length block format.

TRFI? INT,’SAVED.PNL"
returns the data from the panel setup file =SAVED.PNL"
on the internal disk. The response depends on the
parameters set using the communication setup commands
(COMM_FORMAT, COMM_HEADER, and COMM_RS232).

The response to the query explicitly includes the disk and file arguments
unless COMM_FORMAT OFF is previously specified.

COMM._FOFffVlAT, COMM_HEADER, and COMM_RS232

5-149

Mainframe Remote Commands

TRIG_ENABLE TREN
Purpose:

Command:

Query:.

Response:

Arguments:

Default:

Selects the state of the Trig Enable. When TRIG_ENABLE is SET, the Trig
Enable will be internally enabled and the plug-in will be seeking trig-
gers. When TRIG_ENABLE is CLEAR, the Trig Enable will be reset and be
waiting to be externally enabled before the plug-in will trigger.

TREN state

TREN?

state - SET or CLEAR

CLEAR

5-150

TRIG_LOCK

Mainframe Remote Commands

TRLK

Purpose:

Command:

Query..

Response:

Arguments:

Examples:

See Also:

Notes:

Locks all plug-ins to one trigger source. The leftmost plug-in will initially be
selected as the trigger master. To change the trigger master, set trigger
source on slave. When turned OFF, each plug-in will trigger independently
based on its own trigger control setting.

TRIG_LOCK state

TRIG_LOCK?

TRIG_LOCK state

state: [ON / OFF] Turn the locking feature ON or OFF.

TRIG_LOCK ON Locks all plug-ins to the trigger source of the left
most plug-in.

TRIG_LOCK? Queries whether the triggers are locked or
independent.

TRIG_LOCK OFF Reports that the triggers are independent.

TRIG_SELECT in Section 6, plug-in remote commands

Trigger controls of slave plug-ins can not be modified.

5-151

Mainframe Remote Commands

TRIG_MODE TRMD

Purpose:

Command:

Sets the Trigger Mode for the next acquisition.

TRIG_MODE mode

Query:. TRIG_MODE?

Response: TRIG_MODE mode

Argument:

Examples:

Note:

See Also:

mode
AUTO
NORM
SINGLE
SEQueNCE
SEQNOFWl

meaning
Auto trigger mode
Acquires data continuously
Acquires and displays one waveform
Acquires and displays one sequence waveform
Acquires and displays sequence waveforms continuously.

TRMD NORM Sets the trigger mode to NOFWlAL, or as a response,
it indicates the setting as NOFWl.

TRMD?
"TI:WlD AUTO

Requests the current trigger mode setting
Reports that the trigger mode is set to AUTO.

Sequence Trig Mode cannot be selected when interleaved sampling is on
and the current timebese does not allow single shot acquisitions.

Using trigger modes SEQUENCE and SINGLE, this command will not arm
the trigger. Use command AI:WI_.AQUlSITION to actually start a single or
sequence acquisition.

*TRG, STOP, AFt_ACQUISITION

5-152

Mainframe Remote Commands

UPTIME UPTI

Purpose:

Query.

Example:

Report the length of time the scope has been operating since it was turned
on or last time is was set to the default state.

The time may be set to 0 using the "Default Settings" softkey in the "Config-
ure System" screen ot the "RST command.

UPTIME?

UPTI?
UPTI 5104000

Requests the running time in milliseconds.
Indicates that the scope has been running for 5104 seconds
since power-on or default settings.

5-153

Mainframe Remote Commands

VERT_MAGNIFY VMAG
Purpose:

Command:

Query..

Response:

Argument:

Examples:

See Also:

Sets the vertical display gain (not the plug-Jn’s gain) of the specified trace.
Increasing the vertical gain expands the trace on the screen. Decreasing it
attenuates the display of the trace.

preflx:VERT_MAGNIFY mag

The prefix is limited to traces, i.e., TI, "I"2 "1"8.

preflx:VERT_MAGNIFY?

profix:VERT_MAGNIFY mag

mag Choices for magnification are: 20 (greatest), 10, 5, 2, 1, .5,
.2, .1, and .05 (least magnification).

T2:VMAG 10

T3:VMAG?
T3:VMAG 10

VERT_POSITION

Sets the gain to 10.

Requests the vertical magnification of trace 3.
Reports the magnification gain as 10.

5-154

VERT_POSITION

Mainframe Remote Commands

VPOS
Purpose:

Command:

Query:.

Response:

Argument:

Examples:

See Also:

pos

T3:VPOS 1.5

T2:VPOS?
"r2:vPOS 1.0

Note: Trace Position =
tion offset.

Sets the vertical display position (not the plug-in’s offset) of the specified
trace. Increasing the vertical position moves the waveform towards the top
of the display while decreasing the value moves it towards the bottom. The
trace may be positioned by up to + 69 or -69 divisions, relative to the origi-
nal position at acquisition. This allows a fully expanded waveform to be po-
sitioned anywhere on the screen.

preflx:VERT_POSITION pos

The prefix is limited to traces, i.e., T1, T2 T8.

preflx:VERT_POSlTION?

preflx:VERT_POSITION pos

Position in the range -69.0 to 69.0 in increments of .02.

Offsets trace 3 by 1.5 divison from screen center towards
the top of the display.

Requests the vertical position of trace 2.
Indicates the vertical position for trace 2 as 1.0 division
from screen center.

(VPOS) * (VMAG) Divisions from original acquisi-

For example:

If VMAG = 1
TA:VPOS 3 Will position the A trace 3 divisions above the origin

If VMAG = 2
TA:VPOS 3 Will position the A trace 6 divisions above the origin

GRID, VERT_MAGNIFY

5-155

Mainframe Remote Commands

WAIT

Purpose:

Command:

Argument:

Example:

Note:

Prevents the 7200A command parser from executing new commands until
the oscilloscope has completed the current acquisition process.

WAIT tlmeout

timeout range of 0...10,000s in increments of 10 ms.
A timeout of 0 will wait forever.

The following example finds the maximum amplitude (using the command,
T1 :PAVA? MAX) of several different sweeps of Trace 1.

First, send TF~D SINGLE which sets the Trigger Mode to SINGLE.

loop { send : AFt; WAIT0; TI:PAVA? MAX
read response
process response
}

The WAIT command ensures that the maximum is evaluated only after a
new waveform Is acquired.

The WAIT command can only be aborted using DEVICE CLEAR.

5.156

Mainframe Remote Comanands

WAVEFORM WF
Purpose:

Command:

Arguments:

Examples:

Note:

See Also:

Transfers a waveform from the host computer to the 7200A.

prefix: WAVEFORM ALL, waveform

prefix The prefix for this command is limited to memories i.e., M1, M2
M8.

waveform contains the block format specification followed by all the parts
of the waveform, i.e., waveform descriptor, data block(s), etc.

M2: WF ALL, # 9nnnnnnnnn< descriptor> < text>< time> < datl> < dat2>
transfers to the 7200A all the blocks of a waveform into memory 2. Use the
definite length block format.

n is one of the nine bytes which when taken together, indicate the total
number of bytes in the waveform, i.e., bytes in the descriptor plus those in
the text, etc.

< text> and < time> represent annotations and RIS times, respectively.
Each may be optionally included.

< datl>, < dat2>, or both may be used for the waveform data blocks.
If both are used, their order must correspond to that indicated in the de-
scriptor.

M2: WF ALL, # 0 < descriptor> < text> < lime> < datl> < end>
transfer to the 7200A all the blocks of an unprocessed waveform into mem-
ory 2. For GPIB < end> is line feed with asserted Eel line or just asserted
Eel. For RS-232-C, < end> is defined by the End_In argument of the
COMM_RS232 command.

The parameters set by the communication commands are specified within
the waveform descriptor. These settings are used when waveforms are
transferred out of the 7200A. Only # 9 and # 0 formats are allowed for trans-
ferring data into the 7200A. OFF format is not allowed.

WAVEFORM?, COMM_RS232

5-157

Mainframe Remote Commands

WAVEFORM? WF?

Purpose: Transfers a waveform, or part of a waveform, from the 7200A to the host
computer.

Query:. prefix: WAVEFORM? arg

Arguments: prefix The prefix for this command can be channels or traces !
i.e., "1"1, T2 T8, A1, A2, B1, B2.

arg choice of:
ALL all the waveform blocks
DESC waveform descriptor(acquisition

settings)
TEXT user defined trace annotation
TIME RIS time descriptor
DAT1, DAT21st and 2rid blocks of waveform

data

Example: T2: WF? DAT1 transfer a block of data points from trace 2 to the host
computer. The 7200A response depends on the parameters
set using the communication commands
(COMM_FOF~AT, COMM_OFIDER, COMM_HEADER,
and COMM_RS232).

Notes: If no argument is specified, the 7200A responds as if ALL is sent.

The response to the query explicitly includes the argument sent unless
COMM_FOFWlAT OFF is previously specified.

Although the ALL seems excessive, it allows the possibility for transferring
the data back to the oscilloscope. That is, only waveforms having a descrip-
tor and all the other waveform blocks listed in the descriptor can be written
back into the 7200A.

Data read from the oscilloscope using this command can be transferred
back to the oscilloscope only if COMM_FOFWlAT is DEF9 or IND0.

See Section 3: Waveform Transfer for an interpretation of the different parts
of the waveform response.

See Also: WAVEFORM, COMM_FOFWlAT, COMM_ORDER, COMM_HEADER,
COMM_RS232, TRACE._ANOT

5-158

Mainframe Remote Commands

WPE

Purpose:

Command:

Query.

Response:

Argument:

Examples:

See Also:

Sets the Waveform Processing event Enable register (WPE). The WPE reg-
ister determines which events in the Waveform Processing status Register
(WPR) are reported. WPR identifies which trace has been processed com-
pletely. Any reported WPR event sets the WPB summary message bit (bit
1) of the Data Processing Register (DPR) and propagates to the main
Status Byte (STB).

WPE mask

WPE?

WPE mask

mask

WPE 3

WPE?
WPE 3

When expressed in binary, this number (between 0 and 255)
represents the bits of the WPR that can be reported:

Bit #
7
6 Waveform
5 Waveform
4 Waveform
3 Waveform
2 Waveform
1 Waveform
0 Waveform

Signific~,n~o
Waveform 3rocesslng for Trace 8 done

3rocessmg for Trace 7 done
3rocessmg for Trace 6 done
~rocessmg for Trace 5 done
3rocesslng for Trace 4 done
~rocessmg for Trace 3 done
3rocessmg for Trace 2 done
~rocessing for Trace 1 done

Set bit 1, i.e., decimal 2, and set bit O, i.e. decimal 1. Summing
these two values yields the WPE mask of 2+ 1 = 3.

Requests the contents of the WPE.
Response indicates that events for traces 1 and 2 can be reported.

DPE, DPR?, WPR?

$-159

Mainframe Remote Commands

WPR?

Purpose:

Quer~

Response:

Argument:

Examples:

See Also:

Reads and then clears the Waveform Processing status Register (WPR).
WPR signals that processing on a particular waveform has completed. For
history functions (Average, Histogram, Extrema,...), a completed signal
may correspond to a partial result. That is, the waveform processing done
bit is set when a trace can be displayed. For history functions, traces can
be displayed before the maximum sweeps have accumulated.

Clearing the WPR register also clears the WPB summary message bit
(bit # 1) of the Data Processing Register (DPR) and the effect could propa-
gate to the main Status Byte (STB).

WPR?

WPR value

value When expressed in binary, this number (between 0 and 255)
represents the bits of the WPR:

WPR?
WPR3

Bit # Kmnificancev

7 Waveform 3recessing for Trace 8 done
6 Waveform
5 Waveform
4 Waveform
3 Waveform
2 Waveform
1 Waveform
0 Waveform ~

3recessing for Trace 7 done
3recessing for Trace 6 done
~rocessing for Trace 5 done
~roceesing for Trace 4 done
3recessing for Trace 3 done
~rocessing for Trace 2 done
)recessing for Trace 1 done

Read and then clear the WPR.
Response indicates that waveform processing is done
for traces 1 and 2.

ALST?, DPE, DPR?, * STB?, WPE

5-160

XY_ASSIGN

Mainframe Remote Commands

XYAS

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

Assigns traces to the X and Y axis to create an X versus Y display.

XY_ASSIGN X trace, Y trace

XY_ASSlGN?

XY_ASSIGN X trace, Y trace

X trace, Y trace trace is limited to T1, T2T8

XYAS T1 ,T2 Assigns trace 1 as the X axis and trace 2 as the Y axis

XYAS? Returns which traces are assigned to the X and Y axes.

XYAS T4,T3 Indicates that trace 4 is assigned to X and trace 3 to Y.

X and Y trace must be different.

Turning traces on or off may change which traces are assigned.

TRACE, XY_DISPLAY

5-161

Mainframe Remote Commands

XY_CURSOR_ORIGIN
PURPOSE:

Command:

Query:.

Response:

Arguments:

Examples:

See Also:

XYCO
The XY_CURSOR_ORIGIN command sets the position of the origin for ab-
solute time cursor measurements on the XY display.

Absolute time cursor values may be measured either with respect to the
point (0,0) volts (OFF) or with respect to the center of the XY grid (ON).

The XY_CURSOR_ORIGIN query returns the current assignment of the ori-
gin for absolute time cursor measurements.

XY_CURSOR_ORIGIN mode

XY_CURSOR_ORIGIN?

XYCO mode

mode

ON

OFF

XYCO ON

XYCO?

XYCO OFF

meaning

Horizontal Absolute cursor values are calculated
with respect to center of the grid.

Horizontal Absolute cursor values are calculated
with respect to 0 volts.

Sets the origin of the Horizontal Absolute cursors to the
center of the grid

Requests current origin for the Horizontal Absolute
cursors.

Indicates that the origin for the Horizontal Absolute
cursor is 0 volts

XY_CURSOR_VALUE, CURSOR_MEASURE

5-162

Mainframe Remote Commands

XY_CURSOR_SET XYCS

Purpose:

Command:

Query.

Response:

Arguments:

The XY_CURSOR_SET command allows the user to position any one of
the nine independent XY cursors at a given screen location. The positions
of the cursors can be modified or queried even if the required cursor is not
currently displayed or if the XY display mode is OFF.
The XY_CURSOR_SET? query indicates the current position of the
cursor(s).

XY_CURSOR_SET keyword,posltlon, ...,keyword, position

XY_CURSOR_SET? keyword,...,keyword

XYCS keyword,position keyword,position

keyword,position keyword,position

Cursor TyDe keyword position

Marker HABS 0 to 10 DIV
Horizontal HREF, HDIF 0 to 10 DIV
Vertical Absolute X Axis XABS -4 to 4 DIV
Vertical Relative X Axis XREF, XDIF -4 to 4 DIV
Vertical Absolute Y Axis YABS -4 to 4 DIV
Vertical Relative Y Axis YREF, YDIF -4 to 4 DIV

The four cursor types

Vertical Absolute

Vertical Relative

Mar~r

Horizontal

measure the following:

measures the absolute vertical value at a given point.

measures the difference between vertical positions of
the cursors of a trace(s).

measures the absolute horizontal position and its
vertical value of a point on a trace(s).

measures the difference between the horizontal
positions andtheir corresponding vertical values
of two Horizontal cursors.

5-163

Mainframe Remote Commands

XY_CURSOR_SET (continued) XYCS

Examples: XYCS XREF,3DIV,XDIF,-2DIV Races the XREF cursor at + 3DIV
and the DIF at o2DIV

Notes: With query, if no keyword is specified, the positions of all cursors are re-
turned.

The units division is optional.

Arguments are grouped in pairs. The first one names the cursor to be modi-
fied and the second one indicates its new value. Pairs may be given in any
order.

See Also: XY_CURSOR_ORIGIN, XY_CURSOR_VALUE?

$-164

Mainframe Remote Commands

XY_CURSOR_VALUE? XYCV?.

Purpose:

Query.

Response:

Argument:

Returns the current values of the X versus Y trace parameters for a given
cursor type. The cursors need not be displayed to obtain these parame-
ters.

XY_C URSOR_VALUE? keyword,...,keyword

XY_CURSOR_VALUE keyword,value keyword,value

value indicates decimal value followed by the units of the parameters.

For each cursor type, there are six parameters. They are:

keyword value returned

cursor type_X value of x at cursor

cursor type_Y

cursor type_RATIO

cursor type_PROD

cursor type_ANGLE

cursor typeRADIUS

The four cursor types are:

value of y at cursor

the ratio of delta y to delta x

the product of delta y and delta x

the polar co-ordinate angle (theta) of delta
with respect to delta x

the distance to the origin

cursor tyl)~
VABS Vertical

Absolute
VREL Vertical

Relative
HABS Marker

HREL Horizontal

meaning
measures the absolute vertical value at a
given point
measures the difference between the
vertical positions of two cursors
measures the absolute horizontal
position and its vertical value of a point
on a trace(s).
measures the difference between the
horizontal positions and their
corresponding vertical values of two
horizontal cursors

5-165

Mainframe Remote Commands

XY_CURS OR_VAI.UE?(continued) XYDS
Examples: XYCV? HREL_RATIO

HREL_RATIO,.5

Requests the ratio of the values of the y axis
to the x axis using the Horizontal Relative cursor

Indicates that the ratio of the x and y values at the
Horizontal Reference and Difference cursors is .5.

XYCV? HREL_PROD

HREL_PROD 2V** 2

Requests the products of the values of the x
and y axis using the Horizontal Relative cursors.

Indicates that the product of the values of the
x and y axis at the Horizontal Reference
and Difference cursors is 2 Volts squared.

Notes: For HREL and VREL, delta x and delta y are the difference between the two
cursors.

For HABS and VABS, delta x and delta y are the difference between the ori-
gin and the cursor.

If the parameter is not specified or equals ALL, all the measured cursor val-
ues are returned. If the value of a cursor could not be determined in the cur-
rent environment, the value UNDEF will be returned.

See Also: XY_CURSOR_SET, XY_CURSOR_ORIGIN

5-166

Mainframe Remote Commands

XY_DISPLAY XYDS

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Notes:

See also:

Enables or disables the XY display mode. The X versus Y (XY) display
mode allows you to display one trace against another. When enabled, a
square grid, in the top half of the screen is used for the XY display while the
rectangular grid underneath simultaneously shows the original source
waveforms.

For the XY display to be correctly generated, the traces selected must be
of the same time or frequency intewaVpoint and have the same horizontal
units (seconds or hertz). As soon as two compatible traces have been se-
lected, the XY display is automatically generated.

XY_DISPLAY

XY_DISPLAY?

XY_DISPLAY mode

mode ON
OFF

XYDS ON

XYDS?

XYDS OFF

causes the XY display to be on
causes the XY display to be off

Turns on the XY display mode.

Returns the mode of the XY display.

Indicates that the XY display is currently off.

If persistence mode is turned on when the XY display is active, successive
sweeps will be overlaid in the X vs Y display.

XY_ASSIGN, PERSIST, PERSIST_SETUP

5-167

Mainframe Remote Commands

*CAL ?

Purpose:

Query.

Response:

Argument:

Examples:

Note:

See Also:

Performs an internal calibration and reports results. All input channels are
calibrated for the current gain, bandwidth, and timebase settings.

At the end of calibration, the response to *CAL ? indicates how calibration
terminated. After calibration, the instrument returns to the state it was in
prior to the query

* CAL7

* CAL diagnostics

diagnostics Indicates calibration results as follows:

0 Calibration Successful
1 Calibration Failed

*CAt. 1 Response is set to one, indicating calibration for
one or more of the plug-ins has failed.

*CAL? Requests a calibration and its results
* CAL 0 Reports that calibration was successful for all plug-ins

This calibration is performed periodically unless otherwise disabled.

AUTO_CAL, EAR?., EBR?

5-168

*CLS

Mainframe Remote Commands

Purpose:

Command:

Note:

See Also:

Clears all status registers summarized in the main Status Byte (STB).

*CLS

*CLS is a mandatory IEEE-488.2 Command. It should be sent before moni-
toring any status register to clear any previously set state.

All commands that clear the individual status bytes.

5-169

Mainframe Remote Conunands

*ESE

Purpose:

Command:

Query.

Response:

Argument:

Example:

Note:

See Also:

Sets the bits of the standard Event Status Enable register (ESE). The ESE
register determines which events in the standard Event Status Register
(ESR) are reported. The ESR reports errors and events that are useful for
synchronization. Any reported ESR event sets the ESB summary message
bit (bit # 5) of the main Status Byte (STB). The bits in the ESE register
been defined by IEEE-488.2.

* ESE mask

* ESE?

* ESE mask

maskWhen expressed in binary, this number (between 0 and 255)
represents the bits of the ESR register that can be reported:

Bit #
7
6
5
4
3
2
1
0

¯ Sionlfioance
1= Powered On
User Request
Command Error (syntax,invalid cmd,...)
Execution Error (invalid parameter,...)
Device Dependent Error (CAL error,...)
Query Error
Request Control
Operation Complete

*ESE # HF0 Enables the events represented by the upper four bits of this
event register (i.e., PeN, SKR, CMR, EXR)

*ESE?
* ESE 240

Read the contents of the * ESE
Response to query, i.e., # HF0 in hexadecimal, indicates the
upper four enable bits are set.

* ESE is a mandatory IEEE-488.2 Command.

* ESR?

5-170

Mainframe Remote Commands

*ESR?

Purpose:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

Reads and then clears the contents of the standard Event Status Register
(ESR).

IEEE-488.2 defines the ESR to report error conditions common to most
automatic test equipment. The 7200A implements most but not all of these
bits for synchronization and error reporting.

Each bit in the ESR is a summary message bit for a status register. The
ESR will not clear a bit if its corresponding register is not cleared.

Clearing the ESR register also clears the ESB summary message bit
(bit # 5) of the main Status Byte (STB).

*ESR?

* ESR value

value When expressed in binary, this number (between 0 and 255)
represents the bits of the ESR:

Bit # Associated Status Byte
7 PeN
6 none
5 CMR
4 EXR
3 DDR
2 QYR
1 none
0 none

,~gnificance
1= Powered On
User Request
Command Error (syntax,invalid cmd,...)
Execution Error (invalid parameter,...)
Device Dependent Error (CAL error,...)
Query Error
Request Control
Operation Complete

* ESR? Read and then clear the ESR.

*ESR 32 Response, i.e., 20 in hexadecimal, indicates a Command
Error occurred.

* ESR? is a mandatory IEEE-488.2 Command. The bits in the * ESR register
are defined by IEEE-488.2.

* ESE

5-171

Mainframe Remote Commands

*IDN?

Purpose:

Query:.

Response:

Arguments:

Example:

Identifies the instrument. The response indicates the manufacturer, the
oscilloscope model, the serial number, and the software revision level.

*IDN?

* IDN manufacturer, model number,serial number,software revision

model number
serial number
software revision

Indicates, the model number (7200A)
Indicates number specific to each instrument
Indicates the latest update of the instrument’s
software

All arguments are in ASCII.

*IDN?
*IDN

Requests the identity of the instrument
LECROY,7200A, A12036,1.0.1
Response indicates the manufacturer as LeCroy, the model of
the instrument as 7200A, the serial number as an ASCII string, and
the software revision.

5-172

*LRN?

Mainframe Remote Commands

Purpose:

Query.

Response:

Notes:

Returns a command string which contains all the commands necessary to
recreate the current panel settings.

* LRN?

* LRN command,value command,value

The command string returned is in Remote Command syntax which can be
resent to the 7200A.

5-173

Mainframe Remote Commands

*OPC

Purpose:

Query.

Response:

Notes:

See Also:

To conform to IEEE-488.2, the 7200A will set the OPC bit (bit # 0) in the
standard Event Status Register (ESR) in response to an *OPC command.
This bit is set upon completion of any operation.

Several operations can be performed at any one time and can be in various
states of completion.

To correctly determine which operation completed, monitor the Internal
State Register (INR) and the Data Processing Register (DPR).

*OPC?

*OPC 1

The ASCII character 1" is always returned.

*OPC is a mandatory IEEE-488.2 Command.

DPE, DPR?, INE, INR?, *WAI

5-174

Mainframe Remote Commands

*OPT?.

Purpose:

Query:.

Response:

Arguments:

Examples:

Identifies reportable oscilloscope options such as processor type, memory
size, software options, plug-ins installed, or hardware options. The re-
sponse indicates all the installed options.

* OPT?

* OPT proc, mem, disp, io, softmainframe,options prefix:model#
prefix:model#

Mainframe Options are:
proc processor option; PR1 (fast processor)

or PR2 (medium speed)

mem memory options; choices are: ME1, (240 MByte hard disk, 2.88 MByte
floppy)
or ME2 (52 MByte hard disk, 1.44 MByte floppy)

disp display option; choices are: DS1 (color) or DS2 (monochrome)

interface options; may be any or all:
IF1 - IEEE 488 (GPIB)

soft Software Options; may be any or all:
SWl - Time Domain Signal Processing package
SW2 - Statistcal Domain Signal Processing package
SW3- Frequency Domain Signal Processing package

prefix Prefix A or B specifies the plug-in. Mainframe
options have no prefix.

model# Indicates, in ASCII, the model numbers of the installed
options. Multiple options are separated by commas.

* OPT?
* OPT PR1 ,ME1,DS1 ,IFI,SW1,SW2,SW3 A:7242,B:7242

Indicates the high speed processor, large memory,
color display, GPIB, and all software options are
present and that the model numbers of the plug-ins
that are installed. The mainframe has a 7242 in
plug-in A and plug-in B contains another 7242.

5-175

Mainframe Remote Commands

*RST

Purpose:

Command:

Example:

Note:

Sets all 7200A and plug-in control settings to their default values.

* RST

* RST Initiates a soft reset.

"FIST has the same effect as pressing the default settings softkey from the
Configure System screen.

5-176

Mainframe Remote Commands

*SRE

Purpose:

Command:

Query:.

Response:

Argument:

Examples:

Note:

See Also:

Sets the 8-bit Service Request Enable mask (SRE). The SRE mask deter-
mines which events in the main Status Byte (STB) register are reported.
an event is reported, an interrupt (SRQ) is sent to the GPIB controller (if
used). Clearing the SRE mask disables SRQ interrupts.

*SRE mask

*SRE?

* SRE mask

The response returns a value which corresponds to the binary sum of all
SRE register bits. Note that bit # 6 cannot be set and its returned value is al-
ways zero.

mask When expressed in binary, this number (between 0 and 255)
represents the bits of the STB register that can be reported by
an SRQ:

Bit #
7
6
5
4
3
2
1
0

Significance
(MSB) Program Running Bit
RQS (service request) Bit
Standard Event Status Bit
Message Available bit
Reserved
Value Adapted Bit
Data Processing Bit
(LSB) Internal State Change Bit

*SRE 17 This command allows an SRQ to be generated as soon as
bit # 4 (i.e., decimal 16) and/or bit # 0 (i.e. decimal 1) in
STB register are set. Summing these two values yields the
SREmask16+ 1= 17.

*SRE? Read the contents of the SRE.
*SRE 2 Response indicates that the Data Processing enable bit is set.

* SRE? is a mandatory IEEE-488.2 Command.

*STB?

5-177

Mainframe Remote Commands

*STB?

Purpose:

Query:

Response:

Argument:

Examples:

Note:

See Also:

Reads the contents of the main Status Byte register (STB).

*STB?

* STB value

value When expressed in binary, this number (between 0 and 255)
represents the bits of the STB:

Bit # Associated Status Byte
7 (MSB) none
6 none
5 ESR
4 (Output)
3 none
2 none
1 DPR
0 (LSB) INR

Significarli;e
Program Running Bit
RQS (service request) Bit
Standard Event Status Bit
Message Available bit*
Reserved
Value Adapted Bit* *
Data Processing Bit
Internal State Change Bit

* The Message Available (MAV) bit is set if the output queue is not empty.
informs the system controller that there is still data to output. It is reset
once the output queue is empty, indicating that the system controller has
read the data from the 7200A. This bit is not affected by the *CLS com-
mand.
** The Value Adapted Bit is set to 1 if a received numerical argument was
altered before being used in a computation. For example, the 7200A re-
ceives AI:’I’DIV 1 lns. Since the timebase can only be set in multiples of
1,2, and 5, the 1 lns would get rounded to 10ns. The Value Adapted bit
would be sat to report that the received value was altered.

*STB? Read contents of the S’I’B
*STB 16 The response indicates that the output queue is not empty.

*STB? is a mandatory IEEE-488.2 Command. STB is defined by
IEEE-488.1.

*CLS, DPE, DPR?, *ESE, * ESR?, INE, INR?, *SRE

5-178

Mainframe Remote Commands

*TRG
Purpose:

Command:

Note:

See Also:

Enables the signal acquisition by changing the acquisition state from
TRIGGERED to READY.

*TRG

*TRG command, required by IEEE-488.2 is the equivalent of the
ARM_AQUISITION and the IEEE-488.1 GET message.

INR?, INE, STOP, WAIT, ARM_ACQUISITION

5-179

Mainframe Remote Commands

*TST?

Purpose:

Query.

Response:

Argument:

Examples:

Initiates an internal self-test and reports results. Acquisition channels, time-
base, trigger circuits, and other hardware are also tested.

Specific hardware failures are indicated by bits set in the returned status
number. If the number is zero (0), no tests failed.

*TST?

* I’ST status

Status indicates which test failed as follows:

Bit #
6
1
0

~ciated Sioqificanc0
Test Result for Mainframe
Test Result for plug-in B
Test Result for plug-in A

If the test is successful, the bit is cleared, otherwise it is set to one.

*TST?
*TST1

Initiates self-test and requests results.
Response has bit # 0 set to one, indicating that testing for
plug-in placed in slot A has failed. The others have passed or
no plug-ins are in the slots.

5-180

Mainframe Remote Commands

*WAI

Purpose:

Command:

See Also:

Required by the IEEE-488.2 standard, has no effect on the 7200A because
it starts processing a command when the previous command has been en-
tirely executed.

*WAI

*OPC

5-181

7242 Series/7291 Adapter Plug-in Remote Commands

LeCroy 7242 Series / 7291 Adapter:
Plu -in Remote Commands

ART_REJECT (7242B only) . AREJ.
A’R’ENUATION A’I-rN
BANDWIDTH_LIMIT BWL .

COUPLING CPL

ENHANCED_RES ERES
FILTER_COEFF ($1 option only) FCFF.
FILTER_DATA ($1 option only) FLTD.

HF_SYNC HFSY
INTERLEAVED ILVD .
MEMORY_SIZE MSIZ.

NUM_ACQ_CHAN NACH

OFFSET OFST

SAMPLE_CLOCK SCLK
SEGMENTS SEGS

6-3
6-4
6-5
6-6
6-7
6-8
6-10
6-11
6-12
6-14
6-15
6-16
6-17
6-18

SEQ_OPTION (7242B only)... SOPT
SEQ_TRIGRATE SQRT
SWEEPS (7242B only) SWPS
SYNC_AVG_OPT (7242B only) . SAOP
TIME_DIV TDIV.

TRGDLY_UNIT TDUN

TRIG_COUPLING TRCP

TRIG_DELAY TRDL

TRIG_LEVEL TRLV
TRIG_PATTERN TRPA

TRIG_SELECT TRSE

TRIG_SLOPE TRSL
VOLT_DIV VDIV .

6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-30
6-33
6-34

Organization
Each command description begins a new page. A command’s name (header) is printed
long and short form near the top of the page. Although the long form is used in the descrip-
tion, the short form can be used instead. Below the header are up to eight sections which de-
scribe it:

Purpose:
Command:
Query:
Response:
Argument:
Example:
Note:
See Also:

explains a command’s use
contains a command’s syntax
contains the query syntax
contains the syntax of the response to a query
defines a choice(s)
includes the command being used
reports additional considerations
cites other relevant commands

Command Execution
Execution of program messages depends on the instrument status. As a rule, commands
and queries can be executed in either Local or Remote mode.

Before attempting to execute a command or query, the parser scans it to verify its correct-
ness and that sufficient information is given to perform a requested action.

6-I

Note

The LeCroy Model 7242A Plug-in Module is an enhanced version of the LeCroy Model 7242 pro-
viding increased analog bandwidth specifications and effective bit performance to 500 MHz.

All other specifications, front panel operation, and remote control operation are identical to the Le-
Croy Model 7242.

Refer to the LeCroy 7242 Series Plug-in Module Operator’s Manual for details regarding perform-
ance specifications. Refer to the LeCroy Model 7242 Series Plug-in and 7291 2GS/s Adapter Re-
mote Programmer’s Manual for information on remote control commands.

ART REJECT

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

See Also:

7242 Series/7291 Adapter Plug-in Remote Commands

(7242B only) AREJ

To turn artifact rejection on or off while in Synchronous Averaging. When
enabled, any waveform with an underflow or overflow value is not included
in the average. If artifact reject is tumed off, any overflows are set to the
maximum possible value of the ADC and any underflows to the minimum
value.

preflx:ART_REJ ECT state

preflx:ART_REJ ECT?

prefix:ART_REJECT state

plugin Prefix A or B specifies the plug-in.

state ON Turns artifact rejection on.

OFF Turns artifact rejection off.

A:ART_REJECT ON

A:ART_REJECT?
A:ART_REJECT ON

Sets artifact rejection on.

Reports the state of artifact
as on.

SEQ_OPTION, SYNC_AVG_OPT, SWEEPS

6-3

7242 Series/7291 Adapter Plug-in Remote Commands

ATTENUATION ATTN

Purpose:

Command:

Sets the multiplier to the total vertical gain. If attenuation-coded probes are
used, the probe coding contact rings surrounding the CH1, CH2, BNC con-
nectors recognize the attenuation factors of the probes, and this value can-
not be modified with this command. If no probe multiplier is detected, this
command can be used to set the attenuation reflecting the attenuation for
the probe being used. The current value can always be queried.

prefix:ATTENUATION atten

Query:

Response:

prefix:ATTENUATION?

prefix:ATTENUATION atten

Arguments: prefix

atten

Prefix A or B specifies the plug-in followed by the channel
number
range 1, 10, 100, 1000

Examples: A2:A’I-FENUATION 10 Sets probe attenuation for channel 2 on
plug-in A to 10x.

Notes:

A1 :ATTENUATION?
A1 :ATTENUATION 1

Reports current probe attenuation for channel 1
on plugin A to be lx.

A different probe attenuation can be selected for each channel.

The locking of vertical channel controls can only occur when the probe at-
tenuations are equal.

See Also: VOLT_DIV

6..4

7242 Series/7291 Adapter Plug-in Remote Commands

BANDWIDTH LIMIT BWL

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

Reduces the bandwidth to 95 MHz. Use it to reduce signal and system
noise, or to prevent high-frequency aliasing for sample rates above
200 MS/sec.

prefix: BANDWIDTH_LIMIT state

prefix: BANDWIDTH_LIMIT?

prefix:BANDWIDTH_LIMIT state

prefix Prefix A or B specifies the plug-in followed by the
channel number

state Choices are ON or OFF

A1 :BANDWIDTH_LIMIT ON Turns on bandwidth limit on plug-in A,
channel 1.

B2:BANDWIDTH_LIMIT?
B2:BANDWIDTH_LIMIT OFF

Reports current setting for plug-in B, channel
2 to be off.

Bandwidth limit can be adjusted for each channel.

6-5

7242 Series/7291 Adapter Plug-in Remote Commands

COUPLING CPL
Purpose: Sets the vertical coupling used to couple a signal to the vertical amplifier in-

put. In the AC position, signals are coupled capacitively, thus blocking the
inputs signal’s DC component and limiting the lower signal frequencies to
greater than 10 Hz. The input impedance is 1M~. In the DC position, all
signal frequency components are allowed to pass through, and the imped-
ance is selectable as 1 M~ or 50~. If the 50~ input is selected, the signal
will be automatically disconnected from the amplifier whenever the maxi-
mum dissipation is exceeded. If this condition exists, the input coupling is
switched to GND. To clear the overload condition, remove the signal from
the input and reselect the desired coupling.

Command: prefix:COUPLING couple

Query: prefix:COUPLING?

Response: prefix:COUPLING couple

Arguments: prefix
number

couple A1M
D1M

Prefix A or B specifies the plug-in followed by the channel

GND
D50

AC coupling
DC coupling with impedance
at 1 M,Q
Signal is set to ground
DC coupling with impedance
at 50 Q

Examples: AI:COUPLING A1M Tums on AC coupling on plug-in A, channel 1.

A2:COUPLING?
A2:COUPLING D50

Reports current coupling value for plug-in A,
channel 2, to be DC coupling with impedance at 50 ~.

Note: Coupling can be modified for each channel.

6-6

7242 Series/7291 Adapter Plug-in Remote Commands

ENHANCED RES ERES

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

Selects the amount of digital filtering on a signal. By limiting the system
bandwidth, noise can be filtered and reduced. Thus, the effective resolu-
tion can actually be improved beyond the ADC’s ideal performance. Select-
ing greater values of this parameter increasingly filters noise. Since the
ADCs each have 8 bits, selecting the lowest value removes the filter.

prefix:ENHANCED_RES res

prefix:ENHANCED_RES?

prefix: EN HANCED_RES res

prefix

res

Prefix A or B specifies the plug-in followed by the channel
number
Range 8.0 o.. 11.0 in increments of .5.

A2:ENHANCED_RES 10.0 Sets enhanced resolution on plug-in A,
Channel 2

A2:ENHANCED_RES?
A2:ENHANCED_RES 9.5

Reports current enhanced resolution on
plug-in A, Channel 2 to be 9.5.

Enhanced resolution can be selected for each channel.

The enhanced resolution filter will not be applied while in Sequence Trig-
ger Mode.

6-7

7242 Series/7291 Adapter Plug-in Remote Commands

FILTER_COEFF (7242B-S1 option only) FCFF

Command Name proflx:FILTER_COEFF

Alias prefix: FCFF

Format FCFF?

Purpose

Examples

This is a query function to read filter coefficients. Returned will be number
of filters and for each filter, the number of coefficients followed by the coef-
ficients. All values are decimal integers.

The order of the filters is flash A (0) followed by flash B (1) followed
flash C (2) followed by flash D (3). When the 7291 is attached, the order
the filters is channel l’s filters followed by channel 2:

AI(0) B1(1) C1(2) D1(3) A2(4) B2(5)

The coefficients themselves are 16 bit signed integers where 16384
(0x4000)=1, 0=0, -16384 (0xC000)=-I

If each coefficient is represented as h[x], then if the sampling rate is 2
GS/s, then the response is:

,
13, h[0],h[1] h[12], <for channel 1 flash A>
13, h[0],h[1] , h[12], <for channel 1 flash B>
13, h[0],h[1] h[12], <for channel 1 flash C>
13, h[0],h[1] h[12], <for channel 1 flash D>
13, h[0],h[1] h[12], <for channel 2 flash A>
13, h[0],h[1] h[12], <for channel 2 flash B>
13, h[0],h[1] h[12], <for channel 2 flash C>
13, h[0],h[1] h[12], <for channel 2 flash D>
62, h[0],h[1] h[61], <2 GS/s filter>

If the sampling rate is 1 GS/s, the response is:

,
13, h[0],h[1] h[12], <for fiash A>
13, h[0],h[1] , h[12], <forflash B>
13, h[0],h[1] h[12], <for flash C>
13, h[0],h[1],..., h[12], <forflash D>

6-8

7242 Series/7291 Adapter Plug-in Remote Commands

FILTER COEFF (continued) FCFF

Arguments

If the sampling rate is 400 MS/s, the response is:

2, 7, h[0],h[1] h[6], <for flash A>
7, h[0],h[1] h[6], <for flash C>

If the sampling rate is 200 MS/s or less, the response is:

1, 2, h[0],h[1] h[1], <for flash A>

prefix - plugin (A or B) followed by channel

6-9

7242 Series/7291 Adapter Plug-in Remote Commands

FILTER DATA (7242B-S1 option only) FLTD

Command:

Purpose:

plugin:FILTER_DATA filter

Turns ON/OFF correction filters. When FILTER_DATA is ON,
acquisition data is first copied to BRAM and then corrected. Data cannot
be readout until it is corrected. When FILTER_DATA is OFF, uncorrected
data is available within 50 msec after acquisition is complete. Data
will not be corrected until all data is transferred into BRAM Only the first
16380 uncorrected bytes can be read for this plug-in and this uncorrected
data can only be read over SCSI. This command must be sent prior to
entering Protected Mode; otherwise, the data will not be available to be
read over SCSI. If operating in 2 channel mode, then all of channel 1 data
will be sent followed by all of channel 2 data, up to 16380 points.

Arguments: plugin - A or B
filter - ON or OFF

Default: ON

Examples: B:FLTD OFF Allows the first 16380 bytes of uncorrected data to
be available for readout over SCSI.

B:FLTD?
B:FLTD OFF Response to query indicates that uncorrected data

will be sent out SCSI.

6-10

7242 Series/7291 Adapter Plug-in Remote Commands

HF SYNC

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

HFSY

Selects whether the trigger source rate is divided. Set HF Sync to ON to al-
low stable triggering for sources greater than 200 MHz. This control can
be used only when SMART TRIGGERTM is not selected.

preflx:HF_SYNC state

prefix:HF_SYNC?

prefix:HF_SYNC state

prefix

state ON

OFF

Prefix A or B specifies the plug-in followed by the
Trigger source to be modified - 1, 2, 3 EX 10
Sets high frequency sync ON. Trigger rate will be
divided.
Sets high frequency sync OFF.

AI:HF_SYNC ON Enables high freq sync for plug-in A when the
trigger source is channel 1.

A3:HF_SYNC? Reports HFSY for plug-in A is disabled when trigger
A3:HF_SYNC OFF source is external.

HF_SYNC can be selected for each trigger source.

TRIG_SELECT

6-11

7242 Series/7291 Adapter Plug-in Remote Commands

INTERLEAVED ILVD

Purpose: Enables or disables Random Interleaved Sampling (RIS) which has
50ps per sample resolution, or an equivalent sample rate of 20GS/s. RIS
can be enabled under the following conditions:

Max Memory RIS Timebase
Selection Ranges

lk 200ps/div to 250ns/div
2k 200ps/div to 10ns/div
5k 200ps/div to 20ns/div
10k 200ps/div to 50ns/div
20k 200ps/div to 100ns/div
50k 200ps/div to 200ns/div
100k 200ps/div to 500ns/div
200k 200ps/div to 1 p.s/div
*500k 200ps/div to 2p.s/div
Available only when 7242B is purchased with memory Option-L1

Command: prefix:INTERLEAVED state

Query: prefix:INTERLEAVED?

Response: prefix:INTERLEAVED state

Arguments: prefix
state

Prefix A or B specifies the plug-in
RANDOM creates a RIS record with non-uniform

sampling intervals.
INTERPOLATED creates a RIS record with uniform

sampling intervals
OFF Turn RIS off

Examples: A:INTERLEAVED RANDOM Turns interleaved sampling ON for plug-in A.

A:INTERLEAVED OFF Tums interleaved sampling OFF if timebase is
greater than 10nsec/div.

A:INTERLEAVED?
A:INTERLEAVED RANDOM

Reports current value for plug-in A is
interleaved sampling RANDOM.

6-12

7242 Series/7291 Adapter Plug-in Remote Commands

INTERLEAVED (continued) ILVD

Note: The interpolated sampling option uses a linear interpolation algorithm and
the nearest neighboring samples to create RIS record with uniform sam-
pling intervals. The random sampling option does not perform this interpo-
lation.

See AIso: TIME_DIV

6-13

7242 Series/7291 Adapter Plug-in Remote Commands

MEMORY SIZE MSIZ

Purpose:

Command:

Sets the maximum number of sample points to represent each waveform.
By adjusting the maximum memory size, you can tradeoff record length for
update rate. Acquire 2k samples to achieve maximum waveform through-
put. Obtaining longer records will provide a greater time window of the sig-
nal but require more time to process the additional points.

prefix:MEMORY_SIZE slze

Query: prefix: MEMORY_SIZE?

Response: prefix:MEMORY_SIZE size

Arguments:

Examples:

Note:

See Also:

prefix
size

Prefix A or B specifies the plug-in
lk, 2k, 5k, 10k, 20k, 50k for 7242A
lk, 2k, 5k, 10k, 20k, 50k, 100k, 200k for 7242B
lk, 2k, 5k, 10k, 20k, 50k, 100k, 200k, 500k, 1M for Option-L1

A:MEMORY_SIZE 2K Sets memory size for plug-in A to 2K.

A:MEMORY_SIZE?
A:MEMORY_SIZE 50K

Reports current memory size to be 50K.

The memory size affects the time/point, the number of samples collected,
and if in sequence mode, the number of segments allowable.

SEGMENTS, TIME_DIV, INTERLEAVED

6-14

7242 Series/7291 Adapter Plug-in Remote Commands

NUM_ACQ_CHAN NACH

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

This command selects the number of channels which will acquire data. Se-
lection of 4 channels provides data on all channels with a maximum of 50k
per channel single shot and 200k per channel RIS. Reducing the number
of channels acquiring data will provide 100K points per channel single shot
for channels 1 and 2, or 200k points for channel 1.

prefix:NUM_ACQ_CHAN num_channels

prefix:num_acq_chan?

prefix:NUM_ACQ_CHAN num_channels

prefix Prefix A or B specifies the plug-in

num_channels 4

2

1

Sets the number of channels acquiring
data to 4.
Sets the number of channels acquiring
data to 2.
Sets the number of channels acquiring
data to 1.

A:NUM_ACQ_CHAN 2 Acquires data on channels 1 and 2

B:NUM_ACQ_CHAN? Reports the number of channels
B:NUM_ACQ_CHAN 4 acquiring data is 4.

Channels not acquiring data can be used as trigger sources.

MEMORY_SIZE, SEGMENTS, SEQ_TRIGRATE

6-15

7242 Series/7291 Adapter Plug-in Remote Commands

OFFSET OFST

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Sets the voltage offset used to position the signal within the input range.
The range of offset values depends on the Volts/div as shown in the table
below.

prefix:OFFSET value

prefix:OFFSET?

prefix:OFFSET value

prefix Prefix A or B specifies the plug-in, followed by the
channel number

value The following table specifies the valid ranges of offset values:

VOLTS/DIV OFFSET RANGE
5 mV _+_240 mV
10 mV +240 mV
2O mV +240 mV
5O mV ±600 mV
100 mV +1.20 V
!200 mV +2.40 V
500 mV ±6V
1V ±10 V
1 V with VAR GAIN ~4V
* Offset ranges are adjustable in 0.02 division
increments

A1 :OFFSET 2E-02 V Sets offset to .02 Volts on plug-in A, channel 1

A2:OFFSET?
A2.:OFFSET 1.0 V

Reports current offset for plug-in A, channel 2 to
be 1.0 Volts

Offset can be adjusted for each channel.

VOLT_DIV

6-16

SAMPLE CLOCK

7242 Series/7291 Adapter Plug-in Remote Commands

SCLK

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Sets the external sample clock used to synchronize the actual sampling of
the plugin with the input signal. The allowed frequency range is DC to
1GHz and the nominal amplitude accepted is 0bD. When the sample rate
is 1 GS/s, the clock frequency must be less than or equal to 1GHs. Other-
wise the frequency must be less than or equal to 800 MHz.

prefix:SAMPLE_CLOCK state

prefix:SAMPLE_CLOCK?

prefix:SAMPLE_CLOCK state

prefix Prefix A or B specifies plug-in.
state INT specifies the plug-in’s internal clock

EXT specifies user-supplied clock

A:SAMPLE_CLOCK EXT Sets plug-in A sample clock to external.

A:SAMPLE_CLOCK? Reports current clock type being used for
A:SAMPLE_CLOCK INT plug-in A to be internal.

6-17

7242 Series/7291 Adapter Plug-in Remote Commands

SEGMENTS SEGS

Purpose:

Command:

Query:

Response:

Arguments:

Sets the number of segments to be acquired while in sequence trigger
mode. The number of segments, the timebase, the number of channels ac-
quiring data, and the memory size will determine the number of data
points per segment. The maximum allowable segments will vary with mem-
ory size, number of channels acquiring data, and sequence trigger rate se-
lected.

prefix:SEGMENTS aegs

prefix:SEGMENTS?

prefix:SEGMENTS segs

prefix Prefix A or B specifies the plug-in.

Max Number of Max # of

Memory Size Segments with segments with
Max Trig Rate

Option-L1 Max Points Per
Standard Segment

lk 50 5O 4000
2k 100 100 4000
5k 200 2OO 4000
10k 5O0 500 4000
20k 1000 1000 4000
50k 1000 2O00 4000

>100k 1000 4000 4000

Examples:

See Also:

A:SEGMENTS 25 Sets number of segments to be acquired for plug-in A
to be 25.

A:SEGMENTS?
A:SEGMENTS 25

Reports current setting for segments to be acquired
for plug-in A to be 25.

MEMORY_SIZE, TDIV, SEQ_TRIGRATE, NUM_ACQ_CHAN

6-18

7242 Series/7291 Adapter Plug-in Remote Commands

SEQ_OPTION (7242B only) SOPT

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

Selects the type of sequence mode acquisition to be either Sequential or
Synchronous Averaging. Sequential sequence acquires multiple segments
and displays them individually. Synchronous Averaging sequence accumu-
lates multiple segments and averages them together.

prefix:SEQ_OPTION opt

prefix:SEQ_OPTION?

prefix:SEQ_OPTION opt

plugin

opt

Prefix A or B specifies the plug-in.

SEGMENT Sets sequence trigger mode to Sequential.

SYNC_AVG Sets sequence trigger mode to Synchronous Averaging.

A:SEQ_OPTION SEGMENT

A:SEQ_OPTION?
A:SEQ_OPTION SEGMENT

Enables sequential sequence for plug-in A.

Reports SOPT to be sequential
seqence for plug-in A.

When SEQ_OPTION is set for SYNC_AVG, the type of Synchronous Aver-
aging that is performed depends on SYNC_AVG OPT. If it is STAND-
ARD, then Synchronous Averaging is performed on all channels. If set to
ALTERNATE, then Alternate Synchronous Averaging is performed on
Channel 1 only. See section on TIMEBASE status screen in the Opera-
tor’s manual for a explanation of these sequence modes.

SYNC_AVG_OPT, SWEEPS

6-19

7242 Series/7291 Adapter Plug-in Remote Commands

SEQ_TRIGRATE SQRT

Purpose: Sets the method in which segments get acquired during sequence trigger
mode. This selection will affect the sample rate, time per point, points per
segment, and the trigger rate (the time from one trigger to the next).

Selection of TRIGRATE will limit the segment size and number of seg-
ments to provide maximum re-arm rate after each trigger.

Selection of POINTS will reduce the re-arm rate to provide greater record
length and more segments. This is also referred to as "Packed Sequence
Mode".

Command:

The trigger rate for each method is directly proportional to the record
length.

prefix:SEQ_TRIGRATE method

Query: prefix:SEQ_TRIGRATE?

Response: prefix:SEQ_TRIGRATE method

Arguments:

Examples:

prefix Prefix A or B
method TRIGRATE

POINTS

A:SEQ_TRIGRATE POINTS
ment
A:SEQ_TRIGRATE?

A:SEQ_TRIGRATE

specifies plug-in.
specifies maximize trigger rate
specifies maximize points per segment

sets plug-in A to maximize points per seg-

reports current sequence maximize method
being used is trigger rate
TRIGRATE

See Also: TIME_DIV, SEGMENTS, MAX_MEMORY, NUM_ACQ_CHAN

6-20

7242 Series/7291 Adapter Plug-in Remote Commands

SWEEPS (7242B only) SWPS

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

See Also:

Sets the number of sweeps to be accumulated in Synchronous Averaging
or Alternate Synchronous Averaging sequence trigger mode.

prefix:SWEEPS sweeps

prefix:SWEEPS?

prefix:SWEEPS sweeps

plugin Prefix A or B specifies the plug-in.
sweeps A number from 2...50000 in increments of 1

A:SWEEPS 199 Sets the number of sweeps to be accumulated for plug-in A
to be 199.

A:SWEEPS?
A:SWEEPS 199

Reports current setting for sweeps
to be accumulated for plug- in A to be 199.

SEG_OPTION, SEQ_OPTION

6-21

7242 Series/7291 Adapter Plug-in Remote Commands

SYNC_AVG_OPT (7242B only) SAOP

Purpose:

Command:

Query:

Response:

Arguments:

Selects the type of Synchronous Averaging to perform.

preflx:SYNC_AVG_OPT opt

prefix:SYNC_AVG_OPT?

prefix:SYNC_AVG_OPT opt

plugin Prefix A or B specifies the plug-in.

Examples:

Note:

See Also:

opt STANDARD

ALTERNATE

Sets synchronous averaging mode to standard
acquisition.
Sets synchronous averaging mode to alternate.
In this mode data is acquired on Channel 1 only
and alternates between both trigger slopes.

A:SYNC_AVG_OPT STANDARD Sets Synchronous Averaging to
standard acquisition.

A:SYNC_AVG_OPT?
A:SYNC_AVG_OPT STANDARD

Reports the sequence averaging
mode to be standard.

Refer to the section on TIMEBASE status screen in the Operator’s manual
for an explanation of the difference between Synchronous Averaging and
Alternate Synchronous Averaging.

SEQ_OPTION, ART_REJECT, SWEEPS

6-22

Purpose:

Command:

Query:

Response:

Arguments:

Example:

Note:

See Also:

7242 Series/7291 Adapter Plug-in Remote Commands

TDIV

Sets the time per division in a 1-2-5 sequence from 200 psec/div to 10000
Sec/div. This selection will affect the sampling rate, time per point, and
points per division of the acquisition and the displayed trace.

If the timebase falls below 2ns/div, then RIS will automatically be en-
abled. If RIS is enabled and the timebase rises based on the following con-
ditions, RIS will automatically be disabled:

Max Memory Roll Mode
Selection RIS Timebase Ranges Ranges

lk 200ps/div to 250ns/div .5s/div to 10Ks/div
2k 200ps/div to 10ns/div .5s/div to 10Ks/div
5k 200ps/div to 20ns/div o5s/div to 10Ks/div
10k 200ps/div to 50ns/div .5s/div to 10Ks/div
20k 200ps/div to 100ns/div .5s/div to 10Ks/div
50k 200ps/div to 200ns/div .5s/div to 10Ks/div
100k 200ps/div to 500ns/div .5s/div to 10Ks/div
200k 200ps~iv ~ 1Fs~iv ls/div to 10Ks/div
*500k 200ps/div to 2Fs/div 2s/div to 10Ks/div

*5s/div to 10Ks/div
* Available only when 7242B is purchased with memory Option-L1

prefix:TIME_DIV tdiv

prefix:TIME_DIV?

prefix:TIME_DIV tdiv

prefix Prefix A or B specifies the plug-in.
tdiv Range of values 200 ps to 10000 s in a 1-2-5 sequence.

A:TIME_DIV 20 NS

A:TIME_DIV?
A:TME_DIV 20e -09

Allowable units are PS, NS, US, MS, AND S.

INTERLEAVED, SEGMENTS, MEMORY_SIZE, SEQ_TRIGRATE

Sets time/div on plug-in A to 20 nsec/div

Reports the current time per division to be 20 nsec/div

6-23

7242 Series/7291 Adapter Plug-in Remote Commands

TRGDLY UNIT TDUN

Purpose:

Command:

Selects the method used for setting the trigger delay. Trigger delay can be
adjusted as a function of time or screen percentage, the trigger point can
be positioned anywhere on the screen and will be maintained as the time-
base changes. When adjusted in time, the position of the trigger point will
vary as the timebase changes.

preflx:TRGDLY_UNIT unit

Query: prefix:TRGDLY_UNIT?

Response: prefix:TRGDLY_UNIT unit

Arguments: prefix Prefix A or B specifies the plug-in

Examples:

Note:

unit TIME Trigger delay adjusted in time
PERCENTTrigger delay in screen percentage

A:TRGDLY_UNIT PERCENT
A:TRFDLY_UNIT?
A:TRGDLY_UNIT TIME

Sets trigger delay to be adjusted in time
Reports current trigger delay unit

When locked timebases is selected, delay controls are locked.

See Also: TRIG_DELAY

6-24

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG COUPLING TRCP

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

Selects the method used to couple the trigger source to the input of the
trigger circuit.

prefix:TRIG_COUPLING couple

prefix:TRIG_COUPLING?

prefix:TRIG_COUPLING couple

prefix

couple

Prefix A or B specifies the plug-in followed by 1, 2, or 3
to specify trigger source
AC signals are capactively coupled
LFREJ signals are coupled via a capacitive high-pass filter

network which attenuates frequencies below 50 KHz
HFREJ signals are dc coupled to the trig circuit and a

low-pass filter network attenuates frequencies
above 50 KHz

DC signals are DC coupled

A2:TRIG_COUPLING HFREJ
A

Sets trigger coupling to HF REJ on plug-in
trigger source, channel 2.

A3:TRIG COUPLING?
A3:TRIG_COUPLING AC

Reports current trigger coupling for channel
3 of plug-in A to be capacitively coupled.

A different coupling can be selected for each trigger source. If trigger
source is line, the coupling is set to AC.

When locked triggers is selected, trigger coupling cannot be modified on
slave plug-ins.

See Also: TRIG_SELECT

6-25

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG DELAY TRDL

Purpose:

Command:

Sets the degree of pre- or post-trigger delay when recording signals in the
acquisition memories. Delay is specified in terms of time.

prefix:TRIG_DELAY time

Query:

Response:

prefix:TRIG_DELAY?

prefix:TRIG_DELAY time

Arguments: prefix
time

Examples:

Prefix A or B specifies the plug-in
Pretrigger low limit in the range of -5 x TIME_DIV.
Post-trigger delay in the range of 100,000 x time/div.

A:TRIG_DELAY 5.0 ¯ Sets trigger delay for plug-in A to 5 sec.

Note:

A:TRIG_DELAY?
A:TRIG_DELAY 6.0 s

Reports current trigger delay for plug-in A to be
6 seconds.

When locked timebases is selected, delay controls are locked.

6-26

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

LEVEL TRLV

Sets the signal level required to generate a trigger. When the trigger level
is increased, the trigger circuit will respond at a higher voltage level. If verti-
cal sensitivity is adjusted such that the previously selected trigger level ex-
ceeds the range, the trigger level is automatically adjusted to fit the new
range.

prefix:TRIG_LEVEL value

prefix:TRIG_LEVEL?

prefix:TRIG_LEVEL value

prefix Prefix A or B specifies the plug-in followed by 1, 2, EX, or EX/10 to
specify trigger source

value Each trigger source can have the following range of values:

TRIG_SOURCE RANGE INCREMENT

CHANNEL 1 +/-5 div xTotal gain .02 x total gain
CHANNEL 2 +/-5 div x Total gain .02 x total gain
LINE Power line voltage range
EXTERNAL :~.2.volts .002
EXT/10 +_20volts .01

A3:TRIG_LEVEL 1.002 V

A1 :TRIG_LEVEL?
A1 :TRIG_LEVEL .050 V

Set trigger level to 1.002 V for channel
3 of plug-in A

Report current trigger level for plug-in A’s
channel 1 to be 50 mV.

Trigger level can be adjusted for each trigger source independently.
Total gain is the product of VDIV times ATTENUATION.

When locked triggers is selected, trigger level cannot be modified on slave
plug-ins.

VDIV, ATTENUATION

6-27

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG PATTERN TRPA

Purpose: Defines a trigger pattern. Specifies the logic composition of the pattern
sources (CH1, CH2, EX, EX10) and the conditions under which a trigger
can occur.

Command:

Query:

prefix:TRIG_PATTERN CHl..state,CH2_state,Ext..source, Ext state,
trig_condition

prefix:TRIG_PATTERN?

Response:

Arguments:

prefix:TRIG_PATTERN CHl_state, CH2_state, Ext source, Ext state,
trig_condition

prefix Prefix A or B specifies the plug-in.

CHl_state, CH2_state, Ext_state can have the following values:

L Low
H High
X Don’t care

Ext_source can have the following values:

EX External trigger source
EX10 External/10 trigger source

trig_condition can have the following values:

PR Pattern present
AB Pattern absent
EN Pattern entered
EX Pattern exited

Examples:

PR and AB are valid only for State Qualified trigger. EN and EX are valid
only for Pattern and Time/event Qualified triggers.

A:TRIG_PATTERN H,L,X,PR Trigger when CHI=H, CH2=L,
and EX=X are present

A:TRIG_PATTERN?
A:TRIG_PATTERN H,L,X,PR

Reports current trigger pattern

6-28

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG PATTERN (continued)

Notes:

See Also:

TRPA

State is not used for the current trigger source when the trigger type is
State Qualified. A query during this time will specify LINDEF for the state.

This command can be used even if Smart Trigger mode is not activated.

When locked triggers is selected, trigger pattern cannot be modified on
slave plug-ins.

TRIG_SELECT

6-29

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG SELECT TRSE

Purpose:

Command:

Query:

Response:

Arguments:

Selects the actual condition that will trigger the acquisition of waveforms.
Depending on the tdgger type, additional parameters must be specified.
The additional parameters are grouped in pairs. The first one specifies the
keyword to be modified and the second one gives the new value to be as-
signed. Pairs may be given in any order and may be restricted to those
variables to be changed.

prefix:TRIG_SELECT trig_type[, keyword, value [..., keyword, value]]

prefix:TRIG_SELECT?

prefix:TRIG_SELECT trig_type[,keyword, value[.... keyword, value]]

prefix Prefix A or B specifies the plug-in

trig_type Possible values:

STD
SNG
PA
SQ
TEQ

Standard trigger
Single source trigger
Pattern trigger
State qualified trigger
Time/event qualified trigger

keywords

SR TRIGGER SOURCE:
Associated values:
CH1 Channel 1
CH2 Channel 2
EX External
EX10 External/10
LINE Line

Note:

SR does not apply to Pattern triggers

Sending the TRIG_SELECT command to a slave plug-in in locked trigger
mode will make it the trigger master.

6-30

TRIG SELECT

7242 Series/7291 Adapter Plug-in Remote Commands

(continued) TRSE

HT HOLD TYPE
Possible values:
TI holdoff by time
EV holdoff by events
PS Pulse less than
PL Pulse greater than
IS Interval less than
IL Interval greater than
BFTI Trigger before time expires

HT does not apply to Standard triggers.
PS, PL, IS, IL only applies to single source and pattern triggers.
BFTI only applies to State and Time/event qualified triggers.

HV HOLD VALUE
30 nsec -680 sec TI, IS, IL
10 nsec - 680 sec BFTI
1 nsec -680 sec PS and PL
0 - 15.0e06 EV

HV does not apply to Standard triggers.

FR FRAME
ODD Odd frame
EVEN Even frame
BOTH Non-Interlaced

Valid only for TV triggers.

LN LINE
Ranges 10-2500 lines

Valid only for "IV triggers.

SCRATE SCAN RATE
LRES Low resolution (15-20 KHz)
MRES Medium resolution (20-30 KHz)
HRES High resolution (30-63 KHz)

Valid only for "IV triggers.

6-31

7242 Series/7291 Adapter Plug-in Remote Commands

TRIG_SELECT (continued) TRSE

Examples: B:TRIG_SELECT STD,SR,CH2 Standard trigger on Channel 2

B:TRIG_SELECT SNG,SR,LINE,HT,PS,HV,2.0NSEC Single Source
trigger on line with
pulse less than 2nsec

B:TRIG_SELECT PA,HT,EV,HV,4 Pattern trigger on four events

B:TRIG_SELECT SQ,SR,CHI,HT, BFTI,HV,300.0 NS State Qualified
trigger on Channel 1
if conditions are met
within 300 nsec

B:TRIG_SELECT? Report current trigger conditions
B:TRIG_SELECT SQ,SR,CH1,HT, BFTI,HV,300.0e-09s

Notes:

See Also:

Pattem, State Qualified, and Time/event Qualified triggers use the trigger
pattern defined by the command TRIG_PATTERN.

TRIG_PATTERN, HF_SYNC

6-32

TRIG SLOPE

7242 Series/7291 Adapter Plug-in Remote Commands

TRSL

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

Sets the signal edge used to activate the trigger circuit.

prefix:TRIG_SLOPE edge

prefix:TRIG_SLOPE?

prefix:TRIG_SLOPE edge

prefix

edge

Prefix A or B specifies the plug-in followed by 1, 2, EX, or EX/10
to specify trigger source
POS Triggers on a positive slope
NEG Triggers on a negative slope

A2:TRIG_SLOPE POS Sets slope to positive on plug-in A when trigger
source is channel 2

A3:TRIG_SLOPE?
A3:TRIG_SLOPE POS

Report current slope value for plug-in A’s
channel 3 trigger source

Slope is not valid when the trigger source is LINE. Slope can be set inde-
pendently for each trigger source. If HF_SYNC is on, the trigger slope is
set to positive and cannot be modified.

When locked triggers is selected, slope cannot be modified on slave
plug-ins.

6-33

7242 Series/7291 Adapter Plug-in Remote Commands

VOLT DIV VDIV

Purpose:

Command:

Query:

Sets the vertical sensitivity in VOLTS/DIV. Sensitivity ranges from 5my to
2o5V/div. This value combines the variable gain and the fixed volts/div.

preflx:VOLT._DIV value

prefix:VOLT_DIV?

Response: prefix:VOLT_DIV value

Arguments:

Examples:

Notes:

See Also:

prefix
value

Prefix A or B specifies the plug-in followed by the channel
Range is 5.0 mV to 2.5 V

A2:VOLT_DIV 2 V

A1 :VOLT_DIV?
A1 :VOLT_DIV .005 V

Set total gain to 2 volts for plugin A
channel 2
Report current total gain for plug-in A
channel 1 to be 5 mV

This value does not contain probe attenuation.
VDIV value can be adjusted for each channel.

ATTENUATION, TRIG_LEVEL, OFFSET

6-34

LeCro 7234 Plu -in Remote Commands
ART_REJECT AREJ 6-36 SEQ_TRIGRATE SQRT 6-51
A’I-rEN UATION ATTN 6-37 SWEEPS SWPS 6-52
BANDWIDTH_LIMIT BWL 6-38 SYNC_AVG_OPT SAOP 6-53
COUPLING CPL 6-39 TIME_DIV TDIV 6-54
ENHANCED_RES ERES 6-40 TRGDLY_UNIT TDUN 6-56
HF._SYNC HFSY 6-41 TRIG_COUPLING TRCP 6-57
INTERLEAVED ILVD 6-42 TRIG_DELAY TRDL 6-56
MEMORY_SIZE MSIZ 6-44 TRIG_LEVEL TRLV 6-59
OFFSET OFST 6-45 TRIG_PATTERN TRPA 6-60
NUM_ACQ_CHAN NACH 6-46 TRIG_SELECT TRSE 6-62
SAMPLE_CLOCK SCLK 6-47 TRIG_SLOPE TRSL 6-64
SEGMENTS SEGS 6-48 VOLT_DIV VDIV 6-65
SEQ_OPTION SOPT 6-50

Organization
Each command description begins a new page. A command’s name (header) is printed
long and short form near the top of the page. Although the long form is used in the descrip-
tion, the short form can be used instead. Below the header are up to eight sections which de-
scribe it:

Purpose: explains a command’s use
Command: contains a command’s syntax
Query: contains the query syntax
Response: contains the syntax of the response to a query
Argument: defines a choice(s)
Example: includes the command being used
Note: reports additional considerations
See Also: cites other relevant commands

Command Execution
Execution of program messages depends on the instrument status. As a rule, commands
and queries can be executed in either Local or Remote mode.

Before attempting to execute a command or query, the parser scans it to verify its correct-
ness and that sufficient information is given to perform a requested action.

6-35

7234 Plug-in Remote Commands

ART_REJECT AREJ
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

See Also:

To turn artifact rejection on or off while in Synchronous Averaging. When
enabled, any waveform with an underflow or overflow value is not included
in the average. If artifact reject is turned off, any overflows are set to the
maximum possible value of the ADC and any underflows to the minimum
value.

prefix:ART_REJECT state

prefix:ART_REJECT?

prefix:ART_REJECT state

plugin Prefix A or B specifies the plug-in.

state ON Tums artifact rejection on.

OFF Tums artifact rejection off.

A’ART_REJECT ON Sets artifact rejection on.

A:ART_REJECT? Reports the state of artifact
A:ART_REJECT ON as on.

SEQ._OPTION, SYNC_AVG_OPT, SWEEPS

6-36

7234 Plug-in Remote Commands

ATTENUATION ATTN

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

Sets the multiplier to the total vertical gain. If attenuation-coded probes are
used, the probe coding contact rings surrounding the CH1, CH2, CH3 and
CH4 BNC connectors recognize the attenuation factors of the probes, and
this value cannot be modified with this command. If no probe multiplier is
detected, this command can be used to set the attenuation reflecting the
attenuation for the probe being used. The current value can always be que-
ried.

prefix:ATI’ENUATION atten

preflx:A’I’FENUATION?

prefix:ATTENUATION atten

prefix Prefix A or B specifies the plug-in followed by the channel
number- 1,2,3, or 4

atten range 1, 10, 100, 1000

A2:ATTENUATION 10 Sets probe attenuation for channel 2 on
plug-in A to 10x.

A1 :ATTENUATION?
A1 :ATTENUATION 1

Reports current probe attenuation for channel 1
on plugin A to be lx.

A different probe attenuation can be selected for each channel.

The locking of vertical channel controls can only occur when the probe at-
tenuations are equal.

VOLT_DIV

6-37

7234 Plug-in Remote Commands

BANDWIDTH_LIMIT

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

BWL
Reduces the bandwidth from 500 MHz to 95 MHz. Use it to reduce signal
and system noise, or to prevent high-frequency aliasing for sample rates
above 40 MS/s.

prefix:BANDWIDTH_LIMIT state

prefix:BANDWIDTH_LIMIT?

prefix:BANDWIDTH_LIMIT state

prefix Prefix A or B specifies the plug-in followed by the
channel number -1,2,3, or 4

state Choices are ON or OFF

A1 :BANDWIDTH_LIMIT ON

B2:BANDWIDTH_LIMIT?
B2:BANDWlDTH_LIMIT OFF

Tums on bandwidth limit on plug-in A,
channel 1.

Reports current setting for plug-in B, channel
2 to be off.

Bandwidth limit can be adjusted for each channel.

6-38

7234 Plug-in Remote Commands

COUPLING CPL

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

Sets the vertical coupling used to couple a signal to the vertical amplifier in-
put. In the AC position, signals are coupled capacitively, thus blocking the
inputs signal’s DC component and limiting the lower signal frequencies to
greater than 10 Hz. The input impedance is 1M~. In the DC position, all
signal frequency components are allowed to pass through, and the imped-
ance is selectable as 1 M~ or 50~. If the 50~ input is selected, the signal
will be automatically disconnected from the amplifier whenever the maxi-
mum dissipation is exceeded. If this condition exists, the input coupling is
switched to GND. To clear the overload condition, remove the signal from
the input and reselect the desired coupling.

prefix:COUPLING couple

prefix:COUPLING?

prefix:COUPLING couple

prefix

couple

Prefix A or B specifies the plug-in followed by the channel
number-1,2,3, or 4
A1M AC coupling
D1M DC coupling with impedance

at 1 MQ
GND Signal is set to ground
D50 DC coupling with impedance

at50

AI:COUPLING AIM Tums on AC coupling on plug-in A, channel 1.

A2:COUPLING?
A2:COUPLING D50

Reports current coupling value for plug-in A,
channel 2, to be DC coupling with impedance at 50 ~4.

Coupling can be modified for each channel.

6-39

7234 Plug-in Remote Commands

ENHANCED_RES ERES
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

Selects the amount of digital filtering on a signal. By limiting the system
bandwidth, noise can be filtered and reduced. Thus, the effective resolu-
tion can actually be improved beyond the ADC’s ideal performance. Select-
ing greater values of this parameter increasingly filters noise. Since the
ADCs each have 8 bits, selecting the lowest value removes the filter.

preflx:ENHANCED_RES ms

prefix: ENHANCED_RES?

prefix:ENHANCED_RES res

prefix

res

Prefix A or B specifies the plug-in followed by the channel
number-1,2,3, or 4
Range 8.0 ... 11.0 in Increments of .5.

A2:ENHANCED_RES 10.0 Sets enhanced resolution on plug-in A,
Channel 2

A2:ENHANCED_RES?
A2:ENHANCED RES 9.5

Reports current enhanced resolution on
plug-in A, Channel 2 to be 9.5.

Enhanced resolution can be selected for each channel.

The enhanced resolution filter will not be applied while in Sequence Trig-
ger Mode.

6-4O

7234 Plug-in Remote Commands

HF_SYNC HFSY
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Selects whether the trigger source rate is divided. Set HF Sync to ON to al-
low stable triggering for sources greater than 200 MHz. This control can
be used only when SMART TRIGGER is not selected.

preflx:HF_SYNC state

prefix:HF_SYNC?

prefix:HF_SYNC state

prefix

state ON

OFF

Prefix A or B specifies the plug-in followed by the
Trigger source to be modified - 1,2, 3
Sets high frequency sync ON. Trigger rate will be
divided.
Sets high frequency sync OFF.

A1 :HF_SYNC ON Enables high freq sync for plug-in A when the
trigger source is channel 1.

A3:HF_SYNC?
A3:HF_SYNC OFF

Reports HFSY for plug-in A is disabled when trigger
source is channel 3

HF_SYNC can be selected for each trigger source.

TRIG_SELECT

6-41

7234 Plug-in Remote Commands

INTERLEAVED ILVD

Purpose: Enables or disables Random Interleaved Sampling (RIS). RIS can be en-
abled under the following conditions:

Command:

Query:

Response:

Arguments:

Examples:

MAX MEMORY SELECTION RIS TIMEBASE RANGES

1K 200 ps/div to 5 ns/div
2K 200 ps/div to 10 ns/div
5K 200 ps/div to 20 ns/div

10K 200 ps/div to 50 ns/div
20K 200 ps/div to 100 ns/div
50K 200 ps/div to 200 ns/div

100K 200 ps/div to 500 ns/div
200K 200 ps/div to ll~s/div

* 500K 200 ps/div to 2p.s/div
*IM 200 ps/div to 5p.s/div

* Available only when 7234 is purchased with memory option L1.

prefix:INTERLEAVED state

prefix:INTERLEAVED?

prefix:INTER LEAVED state

prefix
state

Prefix A or B specifies the plug-in
RANDOM creates a RIS record with non-uniform

sampling intervals.
INTERPOLATED creates a RIS record with uniform

sampling intervals
OFF Turn RIS off

A:INTERLEAVED RANDOM Turns interleaved sampling ON for plug-in A,

A:INTERLEAVED OFF Turns interleaved sampling OFF if timebase is
greater than 5nsec/div.

A:INTERLEAVED?
A:INTERLEAVED RANDOM

Reports current value for plug-in A is
interleaved sampling RANDOM.

6-42

INTERLEAVED (continued)

7234 Plug-in Remote Commands

ILVD

Note:

See Also:

The interpolated sampling option uses a linear interpolation algorithm and
the nearest neighboring samples to create RIS record with uniform sam-
pling intervals. The random sampling option does not perform this interpo-
lation.

TIME_DIV

6-43

7234 Plug-in Remote Commands

MEMORY_SIZE MSIZ
Purpose: Sets the maximum number of sample points to represent each waveform.

By adjusting the maximum memory size, you can tradeoff record length for
update rate. Acquire 1 k samples to achieve maximum waveform through-
put. Obtaining 200k samples will provide a greater time window of the sig-
nal but require more time to process the additional points.

Command: prefix:MEMORY_SIZE size

Query: prefix:MEMORY_SIZE?

Response: prefix:MEMORY_SIZE size

Arguments: prefix
size

Prefix A or B specifies the plug-in
1K Nominal memory size equals 1K
2K Nominal memory size equals 2K
5K Nominal memory size equals 5K
10K Nominal memory size equals 10K
20K Nominal memory size equals 20K
50K Nominal memory size equals 50K
100K Nominal memory size equals 100K
200K Nominal memory size equals 200K
* 500KNominal memory size equals 500K
* 1M Nominal memory size equals 1M

* Available only when 7234 is purchased with memory option LI.

Examples: A:MEMORY_SIZE 2K Sets memory size for plug-in A to 2K.

A:MEMORY SIZE?
A:MEMORY_SIZE 50K

Reports current memory size to be 50K.

Note: The memory size affects the time/point, the number of samples collected,
and if in sequence mode, the number of allowable segments.

See Also: SEGMENTS, TIME_DIV, INTERLEAVED, SEQ_TRIGRATE

6-44

OFFSET

7234 Plug-in Remote Commands

OFST

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Sets the voltage offset used to position the signal within the input range.
The range of offset values depends on the Volts/div as shown in the table
below.

prefix:OFFSET value

prefix:OFFSET?

prefix:OFFSET value

prefix Prefix A or B specifies the plug-in, followed by the
channel number- 1,2,3, or 4.

value The following table specifies the valid ranges of offset values:

VOLTS/DIV OFFSET RANGE
5 mV :1:240 mV
10 mV :1:240 mV
20 mV :1:240 mV
50 mV i-600 mV
100 mV :1:1.20 V
200 mV :~.2.40 V
500 mV +6 V
1 V without vargain __.10V
1 V with vargain :I:4V

A1 :OFFSET 2E-02 V Sets offset to .02 Volts on plug-in A, channel 1

A2:OFFSET?
A2:OFFSET 1.0 V

Reports current offset for plug-in A, channel 2 to
be 1.0 Volts

Offset can be adjusted for each channel.

VOLT_DIV

6-45

7234 Plug-in Remote Commands

NUM_ACQ_CHAN NACH
Purpose:

Command:

Query:

gespome:

Arguments:

Examples:

Notes:

See Also:

This command selects the number of channels which will acquire data. Se-
lection of 4 channels provides data on all channels with a maximum of 50K
per channel single shot and 200K per channel RIS. Reducing the number
of channels acquiring data will provide 100K points per channel single shot
for channels 1 and 2, or 200K points for channel 1.

preflx:NUM_ACQ_CHAN num_channels

prefix: num_acq_chan?

prefix:NUM_ACQ_CHAN num_channels

prefix Prefix A or B specifies the plug-in

num_channels 4 Sets the number of channels acquiring
data to 4.

2 Sets the number of channels acquiring
data to 2.

1 Sets the number of channels acquiring
data to 1.

A:NUM_ACQ_CHAN 2 Acquires data on channels 1 and 2

B:NUM_ACQ_CHAN? Reports the number of channels
B:NUM_ACQ_CHAN 4 acquiring data is 4.

Channels not acquiring data can be used as trigger sources.

MEMORY_SIZE, SEGMENTS, SEQ_TRIGRATE

6-46

7234 Plug-in Remote Commands

SAMPLE_CLOCK SCLK

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Sets the external sample clock used to synchronize the actual sampling of
the plug-in with the input signal. The allowed frequency range is DC to
200Mhz and the nominal amplitude accepted is 0db.

prefix:SAMPLE_CLOCK state

prefix:SAMPLE_CLOCK?

prefix:SAMPLE_CLOCK state

prefix
state

Prefix A or B specifies plug-in.
INT specifies the plug-in’s internal clock
EXT specifies user-supplied clock

A:SAMPLE_CLOCK EXTSets plug-in A sample clock to external.

A:SAMPLE_CLOCK?
A:SAMPLE_CLOCK INT

Reports current clock type being used for
plug-in A to be intemal.

6-47

7234 Plug-in Remote Commands

SEGMENTS SEGS

Purpose:

Command:

Query:

Response:

Arguments:

Sets the number of segments to be acquired while in sequence trigger
mode. The number of segments, the timebase, the number of channels ac-
quiring data, and the memory size will determine the number of data points
per segment. The maximum allowable segments will vary with memory
size, number of channels acquiring data, and sequence trigger rate se-
lected.

prefix:SEGMENTS segs

prefix:SEGMENTS?

prefix:SEGMENTS segs

prefix Prefix A or B specifies the plug-in.
When Maximizing Tri!lger Rate:

SEGS MEMORY_SIZE MAX ALLOWABLE # MAX ALLOWABLE # OF
OF SEGMENTS SEGMENTS WITH MEMORY

OPTION L1
1K 5O 50
2K 100 100
5K 2OO 200
10K 500 500
!20K 4 CHANNELS 500 1000

2 CHANNELS 1000 1000
1CHANNEL 1000 1000

50K 4 CHANNELS 5OO 200O
2 CHANNELS : 1000 2500
1CHANNEL lOOO 2500

100K 4 CHANNELS 500 2000
2CHANNELS 1000 4000
1CHANNEL 1000 5000

200K 4 CHANNELS 500 2000
2CHANNELS 1000 4OOO
1 CHANNEL 1000 5000

*500K 4 CHANNELS NOT AVAILABLE 4000
2CHANNELS NOT AVAILABLE 5000
1CHANNEL NOT AVAILABLE 5OO0

¯ 1M 4 CHANNELS NOT AVAILABLE 4000
2 CHANNELS NOT AVAILABLE 500O
1CHANNEL NOT AVAILABLE 5OOO

* Available only when 7234 is purchased with memory option L1

6-48

SEGMENTS (continued)

7234 Plug-in Remote Commands

SEGS

Examples:

See Also:

When maximizing points per segment:
segs All memory sizes range 1...5000 in increments of I

A:SEGMENTS 25 Sets number of segments to be acquired for plug-in A
to be 25.

A:SEGMENTS?
A:SEGMENTS 25

Reports current setting for segments to be acquired
for plug-in A to be 25.

MEMORY_SIZE, TDIV, SEQ_TRIGRATE, NUM_ACQ_CHAN

6-49

7234 Plug-in Remote Commands

SEQ_OPTION SOPT
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

Selects the type of sequence mode acquisition to be either Sequential or
Synchronous Averaging. Sequential sequence acquires multiple segments
and displays them individually. Synchronous Averaging sequence accumu-
lates multiple segments and averages them together.

preflx:SEQ_OPTION opt

preflx:SEQ_OPTION?

prefix:SEQ_OPTION opt

plugin Prefix A or B specifies the plug-in.

opt SEGMENT Sets sequence trigger mode to Sequential.

SYNC_AVG Sets sequence trigger mode to Synchronous Averaging.

A:SEQ_OPTION SEGMENT Enables sequential sequence for plug-in A.

A:SEQ_OPTION? Reports SePT to be sequential
A:SEQ_OPTION SEGMENT seqence for plug-in A.

When SEQ_OPTION is set for SYNC_AVG, the type of Synchronous Aver-
aging that is performed depends on SYNC_AVG_OPT. If it is STANDARD,
then Synchronous Averaging is performed on all channels. If set to ALTER-
NATE, then Alternate Synchronous Averaging is performed on Channel 1
only. See section on TIMEBASE status screen in the Operator’s manual for
a explanation of these sequence modes.

SYNC_AVG_OPT, SWEEPS

6-50

SEQ_TRIGRATE

7234 Plug-in Remote Commands

SQRT
Purpose: Sets the method in which segments get acquired during sequence trigger

mode. This selection will affect the sample rate, time per point, points per
segment, and the trigger rate (the time from one trigger to the next). Selec-
tion of maximize trigger rate will tradeoff the number of segments and seg-
ment size for maximum re-arm rate. Selection of maximize points per
segment will tradeoff re-arm rate for a larger number of segments and seg-
ment size. This method processes each segment as it is acquired. The trig-
ger rate for each method varies with the length of each segment, and the
number of channels acquiring data.

Command:

Query:

Response:

Arguments:

Examples:

See Also:

prefix:SEQ_TRIGRATE method

preflx:SEQ_TRIGRATE?

prefix:SEQ_TRIG RATE method

prefix
method

Prefix A or B specifies plug-in.
TRIGRATE specifies maximize trigger rate
POINTS specifies maximize points per segment

A:SEQ_TRIGRATE POINTS
A:SEQ_TRIGRATE?

A:SEQ_TRIGRATE

sets plug-in A to maximize points per segment
reports current sequence maximize method
being used is trigger rate
TRIGRATE

TIME_DIV, SEGMENTS, MAX_MEMORY, NUM_ACQ_CHAN

6-51

7234 Plug-in Remote Commands

SWEEPS SWPS
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

See Also:

Sets the number of sweeps to be accumulated in Synchronous Averaging
or Alternate Synchronous Averaging sequence trigger mode.

prefix:SWEEPS sweeps

prefix:SWEEPS?

prefix:SWEEPS sweeps

plugin Prefix A or B specifies the plug-in.
sweeps A number from 2...50000 in increments of 1

A:SWEEPS 199 Sets the number of sweeps to be accumulated for plug-in A
to be 199.

A:SWEEPS? Reports current setting for sweeps
A:SWEEPS 199 to be accumulated for plug- in A to be 199.

SEG_OPTION, SEQ_OPTION

6-52

SYNC_AVG_OPT

7234 Plug-in Remote Commands

SAOP

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Selects the type of Synchronous Averaging to perform.

prefix:SYNC_AVG_OPT opt

prefix:SYNC_AVG_OPT?

preflx:SYNC_AVG_OPT opt

plugin

opt

Prefix A or B specifies the plug-in.

STANDARD

ALTERNATE

Sets synchronous averaging mode to standard
acquisition.
Sets synchronous averaging mode to alternate.
In this mode data is acquired on Channel 1 only
and altemates between both trigger slopes.

A:SYNC_AVG_OPT STANDARD Sets Synchronous Averaging to
standard acquisition.

A:SYNC_AVG OPT?
A:SYNC_AVG_OPT STANDARD

Reports the sequence averaging
mode to be standard.

Refer to the section on TIMEBASE status screen in the Operator’s manual
for an explanation of the difference between Synchronous Averaging and
Altemate Synchronous Averaging.

SEQ_OPTION, ART_REJECT, SWEEPS

6-53

7234 Plug-in Remote Commands

TIME_DIV TDIV

Purpose: Sets the time per division in a 1-2-5 sequence from 200 psec/div to 10000
Sec/div. This selection will affect the sampling rate, time per point, and
points per division of the acquisition and the displayed trace.

If the timebase falls below 10 ns/div, then RIS will automatically be en-
abled, if RIS is enabled, RIS will be disable when no longer possible ac-
cording to the table below. If the Timebase dsas above 200ms/div Roll
Mode will be enabled, if the timebase falls below 500ms/div Roll Mode will
be disabled, except id the memory size is 200K then Roll Mode will be
used at 1 s/div and above.

TIMEBASE (/D/V)

Conutmnd:

Query:

Response:

Arguments:

prefix:TIME_DlV tdlv

preflx:TIME_DlV?

prefix:TIME_DIV tdiv

prefix Prefix A or B specifies the plug-in.
tdiv Range of values 200 ps to 10000 s in a 1-2-5 sequence.

6-54

TIME_DIV

7234 Plug-in Remote Commands

(continued) TDIV
Example:

Note:

See Also:

A:TIME_DIV 20 NS Sets time/div on plug-in A to 20 nsec/div

A:TIME_DIV? Reports the current time per division to be 20 nsec/div
A:TME_DIV 20e -09

Allowable units are PS, NS, US, MS, AND S.

INTERLEAVED, SEGMENTS, MEMORY_SIZE, SEQ_TRIGRATE

6-55

7234 Plug-in Remote Commands

TRGDLY_UNIT TDUN
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Selects the method used for setting the trigger delay. Trigger delay can be
adjusted as a function of time or screen percentage. When delay is ad-
justed in screen percentage, the trigger point can be positioned anywhere
on the screen and will be maintained as the timebase changes. When ad-
justed in time, the position of the trigger point will vary as the timebase
changes.

preflx:TRGDLY_UNIT unit

prefix:TRGDLY_UNIT?

prefix:TRGDLY_UNIT unit

prefix Prefix A or B specifies the plug-in

unit TIME Trigger delay adjusted in time
PERCENTTrigger delay adjusted in screen percentage

A:TRGDLY_UNIT

A:TRGDLY_UNIT?
A:TRGDLY_UNIT

PERCENT

TIME

Sets the trigger delay to be adjusted
in time
Reports current trigger delay unit

When locked timebases is selected, delay controls are locked.

TRIG_DELAY

6-56

7234 Plug-in Remote Commands

TRIG_COUPLING TRCP
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Selects the method used to couple the trigger source to the input of the
trigger circuit.

prefix:TRIG_COUPLING couple

prefix:TRIG_COUPLING?

prefix:TRIG_COUPLING couple

prefix

couple

Prefix A or B specifies the plug-in followed by 1,2, or 3
to specify trigger source
AC signals are capactively coupled
LFREJ signals are coupled via a capacitive high-pass filter

network which attenuates frequencies below 50 KHz
HFREJ signals are dc coupled to the trig circuit and a

low-pass filter network attenuates frequencies
above 50 KHz

DC signals are DC coupled

A2:TRIG_COUPLING HFREJ
A

Sets trigger coupling to HF REJ on plug-in
trigger source, channel 2.

A3:TRIG_COUPLING?
A3:TRIG_COUPLING AC

Reports current trigger coupling for channel
3 of plug-in A to be capacitively coupled.

A different coupling can be selected for each trigger source. If trigger
source is line, the coupling is set to AC.

When locked triggers is selected, trigger coupling cannot be modified on
slave plug-ins.

TRIG_SELECT

6-57

7234 Plug-in Remote Commands

TRIG_DELAY TRDL
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Note:

See Also:

Sets the degree of pre- or post-trigger delay when recording signals in the
acquisition memories. Delay is specified in terms of time or screen percent-
age.

prefix:TRIG_DELAY value

prefix:TRIG_DELAY?

prefix:TRIG_DELAY value

prefix
value

Prefix A or B specifies the plug-in
PreVigger low limit in the range of -5 x TIME_DIV.
Post-trigger delay in the range of 100,000 x time/div.
Trigger delay percent in the range of 0% to 100%

A:TRIG_DELAY 5.0 ¯
A:TRIG_DEALY 50%

Sets trigger delay for plug-in A to 5 sec.
Sets rigger point to center of screen.

A:TRIG_DELAY? Reports current trigger delay for plug-in A to be
A:TRIG_DELAY 6.0 s 6 seconds.

When locked timebases is selected, delay controls are locked.

TRGDLY_UNIT

6-58

7234 Plug-in Remote Commands

TRIG_LEVEL TRLV

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

Sets the signal level required to generate a trigger. When the trigger level
is increased, the trigger circuit will respond at a higher voltage level. If verti-
cal sensitivity is adjusted such that the previously selected trigger level ex-
ceeds the range, the trigger level is automatically adjusted to fit the new
range.

prefix:TRIG_LEVEL value

prefix:TRIG_LEVEL?

prefix:TRIG_LEVEL value

prefix Prefix A or B specifies the plug-in followed by 1,2, or 3 to specify
trigger source

value Each trigger source can have the following range of values:

TRIG SOURCE RANGE INCREMENT

CHANNEL 1 +/-5 div x Total gain .02 x total gain
CHANNEL 2 +/-5 div x Total gain .02 x total gain
CHANNEL 3 +/-5 div x Total gain .02 x total gain

A3:TRIG_LEVEL 1.002 V Set trigger level to 1.002 V for channel
3 of plug-in A

A1 :TRIG_LEVEL?
A1 :TRIG_LEVEL .050 V

Report current trigger level for plug-in A’s
channel 1 to be 50 mV.

Trigger level can be adjusted for each trigger source independently.
Total gain is the product of VDIV times ATTENUATION.

When locked triggers is selected, trigger level cannot be modified on slave
plug-ins.

VDIV, A’I-rENUATION

6-59

7234 Plug-in Remote Commands

TRIG_PATTERN TRPA

Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Defines a trigger pattem. Specifies the logic composition of the pattern
sources (CH1, CH2, CH3) and the conditions under which a trigger can oc-
cur.

prefix:TRIG_PATTERN CHl_state,CH2_state,CH3_state, trlg_condl-
tlon

prefix:TRIG_PATTERN?

prefix:TRIG_PATTERN CHl_state, CH2_state, CH3_state, trig_condition

prefix Prefix A or B specifies the plug-in.

CHl_state, CH2_state, CH3_state can have the following values:

L Low
H High
X Don’t care

tdg_condiUon can have the following values:

PR Pattern present
AB Pattern absent
EN Pattern entered
EX Pattern exited

PR and AB are valid only for State Qualified trigger. EN and EX are valid
only for Pattern and Time/event Qualified triggers.

A:TRIG_PATTERN H,L,X,PR Trigger when CHI=H, CH2=L,
and CH3=X are present

A:TRIG_PATFERN?
A:TRIG_PA’I-I’ERN H,L,X, PR

Reports current trigger pattern

6-60

TRIG_PATTERN (continued)

7234 Plug-in Remote Commands

TRPA
Notes:

See Also:

State is not used for the current trigger source when the trigger type is
State Qualified. A query during this time will specify UNDEF for the state.

This command can be used even if Smart Trigger mode is not activated.

When locked triggers is selected, trigger pattern cannot be modified on
slave plug-ins.

TRIG_SELECT

6-61

7234 Plug-in Remote Commands

TRIG_SELECT TRSE
Purpose: Selects the actual condition that will trigger the acquisition of waveforms.

Depending on the trigger type, additional parameters must be specified.
The additional parameters are grouped in pairs. The first one specifies the
keyword to be modified and the second one gives the new value to be as-
signed. Pairs may be given in any order and may be restricted to those
variables to be changed.

Command: prefix:TRIG_SELECT trig_type[, keyword, value [..., keyword, value]]

Query: prefix:TRIG_SELECT?

Response: prefix:TRIG_SELECT trig_type[,keyword, value[.... keyword, value]]

Arguments: prefix Prefix A or B specifies the plug-in

trig_type Possible values:

STD
SNG
PA
SQ
TEQ

Standard trigger
Single source trigger
Pattern trigger
State qualified trigger
Time/event qualified trigger

keywords

SR TRIGGER SOURCE:
Associated value=;
CH1 Channel 1
CH2 Channel 2
CH3 Channel 3
LINE Line

SR does not apply to Pattern triggers

Note: Sending the TRIG_SELECT command to a slave plug-in in locked trigger
mode will make it the trigger master.

6-62

7234 Plug-in Remote Co~ds

TRIG_SELECT (continued) TRSE

Examples:

Notes:

See Also:

HT HOLD TYPE
Possible values:
TI holdoff by time
EV holdoff by events
PS Pulse less than
PL Pulse greater than
IS Interval less than
IL Interval greater than
BFTI Trigger before time expires

HT does not apply to Standard triggers.
PS, PL, IS, IL only applies to single source and pattern triggers.
BFTI only applies to State and Time/event qualified triggers.

HV HOLD VALUE
30 nsec - 680 sec TI, IS, IL
10 nsec - 680 sec BFTI
1 nsec- 680 sec PS and PL
0 - 15.0e06 EV

HV does not apply to Standard triggers.

B:TRIG_SELECT STD,SR,CH2 Standard trigger on Channel 2

B:TRIG_SELECT SNG,SR,LINE,HT,PS,HV,2.0NSEC Single Source
trigger on line with
pulse less than 2nsec

B:TRIG_SELECT PA,HT, EV,HV,4 Pattern trigger on four events

B:TRIG_SELECT SQ,SR,CH1,HT, BFTI,HV,300.0 NS State Qualified
trigger on Channel 1
if conditions are met
within 300 nsec

B:TRIG_SELECT? Report current trigger conditions
B:TRIG_SELECT SQ,SR,CH 1 ,HT,BFTI,HV,300.0e-09s

Pattern, State Qualified, and Time/event Qualified triggers use the trigger
pattern defined by the command TRIG_PA’I-rERN.

TRIG_PA’f-I’ERN, HF_SYNC

6-63

7234 Plug-in Remote Conunands

TRIG_SLOPE TRSL
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

Sets the signal edge used to activate the trigger circuit.

prefix-TRIG_SLOPE edge

prefix:TRIG_SLOPE?

prefix:TRIG_SLOPE edge

prefix Prefix A or B specifies the plug-in followed by 1,2, or 3
to specify trigger source

edge POS Triggers on a positive slope
NEG Triggers on a negative slope

A=:TRIG_SLOPE POS Sets slope to positive on plug-in A when trigger
source is channel 2

A3:TRIG_SLOPE? Report current slope value for plug-in A’s
A3:TRIG_SLOPE POS channel 3 trigger source

Slope is not valid when the trigger source is LINE. Slope can be set inde-
pendently for each trigger source. If HF_SYNC is on, the trigger slope is
set to pos~ve and cannot be modified.

When locked triggers is selected, slope cannot be modified on slave
plug-ins.

6-64

7234 Plug-in Remote Commands

VOLT_DIV VDIV
Purpose:

Command:

Query:

Response:

Arguments:

Examples:

Notes:

See Also:

Sets the vertical sensitivity in VOLTS/DIV. Sensitivity ranges from 5mv to
2.5V/div. This value combines the variable gain and the fixed volts/div.

prefix:VOLT_DIV value

prefix:VOLT_DIV?

prefix:VOLT_DIV value

prefix
value

Prefix A or B specifies the plug-in followed by the channel 1,2,3 or 4
Range is 5.0 mV to 2.5 V

A2:VOLT_DIV 2 V

A1 :VOL’r_DIV?
A1 :VOLT_DIV .005 V

Set total gain to 2 volts for plugin A
channel 2
Report current total gain for plug-in A
channel 1 to be 5 mV

This value does not contain probe attenuation.
VDIV value can be adjusted for each channel.

ATTENUATION, TRIG_LEVEL, OFFSET

6-65

Section 7: Internal Command Lan ua e

Index of ICL Statements and Functions

abs 7-57
acos 7-58
array 7-28
asin 7-59
assignment 7-30
atan 7-60
atan2 7-61
break 7-31
call 7-32
ceil 7-62
chr 7-63
comment 7-33
cond 7-64
cos 7-65
display 7-34
else 7-35
elseif 7-36
end 7-37
endif 7-38
endloop 7-39
exp 7-66
first 7-67
floor 7-68
for 7-40
format 7-69
if 7-42
input 7-43
last 7-72
leR 7-71

list 7-44
log 7-74
IoglO 7-73
menu 7-45
mid 7-76
next 7-77
ord 7-78
prev 7-79
print 7-46
procedure 7-47
query 7-80
return 7-48
right 7-81
round 7-82
search 7-83
sign 7-84
sin 7-85
sqrt 7-86
status 7-49
strlen 7-87
tan 7-88
token 7-89
trunc 7-91
type 7-92
upper 7-93
var 7-51
wait 7-53
while 7-54

7-1

Writing a Program

Introduction
This section describes the Internal Command Language (ICL), a programming language for
customizing the 7200A to meet your specific applications. Using ICL, you can write pro-
grams to collect and examine data and make decisions about the result.

In many ways ICL is similar to Basic, C, or Pascal. A program consists of variables, subrou-
tines, input and output statements, and statements which control the program’s order of exe-
cution. In addition, an ICL program may contain any remote command or query described in
sections 5 and 6 of this manual.

NOTE: When an/CL Program is running, remote commands are locked out.
Therefore, bit 7 of the main status byte should always be checked (using
serial poll) before sending remote commands to ensure proper remote
operation.

This section is divided into subsections which describe:

Writing a Program
Example Programs
Elements of a Program
Statements
Built-in Functions

Writing a Program
The 7200A can learn a sequence of front-panel operations, as described in the 7200A Preci-
sion Digital Oscilloscope Operator’s Manual. Using this facility you can create an ICL pro-
gram consisting of a series of remote commands.

Learning a program is a good way to get started with a custom application. After the se-
quence of commands is learned, you can transfer it to a DOS formatted 3.5" floppy disk and
use an IBM/PC or compatible to modify it or add flow-of-control statements.

The objective is to create a file containing the source text of your program. You can use any
text editor to create the file, which should have the extension "SRC". For example, to write a
program to write "Hello world." on the display, use any text editor to create a file called
HELLO.SRC which contains the following four lines:

7-2

Example Programs

; This program prints on the screen.

print display ’Hello world.’
end

Now insert the floppy in the 7200A’s disk drive and enter the Program Setup screen by press-
ing MODIFY and then "Learn Program" or "Run Program". Set the disk parameter to
FLOPPY and move the box to the INPUT FILE entry. You should see your program HELLO
among the choices. Select it and press the "Recall" key to read it. The 7200A will automat-
ically compile the program and if any errors occur it will display a message, otherwise the
text of the program will appear in the upper half of the screen.

Alternately, you can use the PC program called COMPILE, which is supplied with the
7200A. To compile the program before trying to load the program into the 7200A, Type

C>COMPILE HELLO

to create the file HELLO.APD. If you have been working on a hard disk drive, copy these two
files onto a 3.5" floppy. With the floppy in drive B, type the following DOS command:

C>COPY HELLO.* B:

Press Return to display the Main Screen. Next press "Run Program" to execute the pro-
gram. The message "Hello world." will appear in the upper half of the screen, indicating that
your program has run successfully.

Example Programs
This section introduces the features of ICL using some example programs. The first example
is a short program, just to familiarize you with the appearance of ICL programs. The second
example more fully illustrates the features of ICL, and performs some operations which are
common to many actual applications.

The line numbers given in the right-hand margin are used during the discussion of the pro-
grams, and are not actually included in the programs.

Example 1

The first example is straightforward. The comments within the program describe what each
group of lines does. After the example is a detailed discussion of each group. As you read
through the example, keep the following rules in mind:

¯ Lines beginning with a semicolon (;) are comments.

¯ Lines beginning with upper case letters are remote commands, as
described in sections 5 and 6 of this manual.

7-3

Example Programs

¯ Lines beginning with lower case letters are ICL statements, and are used
to control the program.

; Set trace 1 to be channel AI. 1
T1 :DEF EQN,"AI", MAXPTS,50000 2

3
; Turn trace 1 on and the others off. 4
T1 :TRA ON 5
fori=2to8 6
’T’ I i [’:TRA OFF’ 7

endloop 8
9

; Select a single grid 10
GRID SINGLE, SINGLE 11

12
; Perform autosetup and wait for it to finish. 13
ASET 14
wait for 20 seconds 15

16
; Get the V/DIV setting for channel AI. 17
value = query(’A1 :VDIV?’) 18

19
; Print a message about the size of the signal. 20
if token(value, 1) <= 0.1 21
print display ’Small Signal’ 22

else 23
print display ’Large Signal’ 24

endif 25
end 26

Lines DescriDtion

1

4-8

This is a comment which describes line 2. In these example programs, inden-
tion (space at the beginning of the line) is used to help organize the program.
The lines described by a comment are indented under it, and are followed by
a blank line.

This is a remote command which is used to define the equation for trace 1..
For more information about this command, see section 5 of this manual,
"Mainframe Remote Commands".

These lines adjust the traces so that trace 1 is on, and the others are off.
Line 5 turns trace 1 on using the "TRACE" command, described in section 5.
Lines 6 through 8 are a loop which turns traces 2 through 8 off.

7.4

Example Programs

10-11

13-15

17-18

20-25

The loop is introduced in line 6 with the for statement. This defines a vari-
able, "i", which takes on the values 2, 3, 4 8 on successive iterations of
the loop. Line 8 terminates the loop. The lines within the loop (in this case
line 7) are executed once for each different value of the variable "i".

Line 7 is a command which is constructed using the string concatenate (join)
operator. The following items are joined to produce the command: the string
’T’, the value of the variable "i", and the string ’:TRA OFF’. For example, the
first time through the loop, "i" has the value 2. The strings ’T’, ’2’, and ’:TRA
OFF’, are joined to produce the command ’T2:TRA OFF’. This is another use
of the "TRACE" command which was used in line 5.

These lines use the "GRID" command to select a single grid.

These start an "AUTO_SETUP" and wait for it to finish. This brings up an im-
portant point: most commands begin actions, but don’t wait for them to finish.

Sometimes, it isn’t necessary to wait for a command to finish, as in the
"GRID" command in line 11. In that case, it really doesn’t matter when the
change occurs.

In other cases, it is very important to wait for a command to finish. In particu-
lar, if the program needs a value which results from the command in ques-
tion, you must wait for it to finish. This is done with the wait statement in line
15. This simply delays execution of the next operation in the program for 20
seconds, which should be enough time for the auto setup to complete.

Note that there is a better way to wait for operations to complete than to de-
lay for a fixed amount of time. The status statements, along with a variation
of the wait statement are used for this purpose. This method is discussed in
the second example program.

These lines read the current value of the VOLTS/DIVISION setting using the
query function, described on p. 7-80. The expression in parentheses,
’A1 :VDIV?’ is a variation of the "VOLT_DIV" command which, instead of set-
ting the VOLTS/DIVISION for channel A1, returns the current value. This
type of command is referred to as a query.

The VOLT_DIV query returns a string such as ’A1 :VOLT_DIV .005 V’. The
query function returns this string, less the heading ’AI:VOLT_DIV’. There-
fore, the result could be ’.005 V’.

7-5

Example Programs

These lines examine the VOLTS/DIVISION setting and print a message
based on the value. The token function extracts the first token from the string
returned by query in line 18. The first token is the number, such as ’.005’.

Line 21 contains an if statement which tests the result. If it is less than or
equal to 0.1, the print statement in line 22 is executed. Otherwise, the print
statement in line 24 is executed.

Line 23 contains an e/se statement, which serves to separate the alternative
choices of the if. Line 25 contains an endifstatement, which indicates the
end of the altematives.

This example uses only one statement in each alternative, but as many state-
ments as needed could have been used instead.

Lines 22 and 24 contain print statements, which are described on page 7-44.
The keyword disp/ay indicates that the output is to be written at the top of the
7200A’s screen. In both lines, the expressions following disp/ay are strings. If
necessary, they could have joined the contents of variables and strings to
produce more complex results.

26 This statement indicates the end of the program.

Example 2

The second example is more involved than the first. The first thing you might note is that it is
divided into sections. Lines 1 to 27 are the main program. Lines 29 to 76 are the procedure
"initialize". Lines 78 to 94 are the menu "set_up", etc.

There are several reasons for this type of structure. When a program grows beyond a certain
size, it becomes difficult to understand. By dividing the program into procedures, you can iso-
late the parts which perform distinct functions. Each part is then smaller and easier to under-
stand.

Making a procedure also provides the opportunity to call it from several different places. This
results in a smaller program than would be the case if the procedure’s statements were in-
cluded everywhere they were needed.

Menus are used to build setup screens, like those used elsewhere in the 7200A. They en-
able you to display and modify program variables in a familiar way. The statements used in a
menu are different than those used in the main program or a procedure. Therefore, the struc-
turing of the program into menus is necessary if you want to use setup screens.

7-6

Example Programs

; This program samples an input, counting parameter
; values which are above, below, and between two
; selected values. After all waveforms are analyzed,
; a report is generated¯

; Define the choice of waveform parameters.
list parameters is (pkpk ampl min max)

; Initialize variables.
call initialize

; This loop examines "count" waveforms¯
for i = 1 to count
; Acquire the next waveform.
call acquire

; Get the parameter value and update totals.
call update

endloop

; Select normal trigger mode¯
TRMD NORM

; Report the results.
call report

end

; This procedure sets initial values of variables
; and puts the 7200A into a known state.

procedure initialize
; Define trace 1 to be channel A1 with no processing.
T1 :DEF EQN,"AI",MAXPTS,50000

; Turn trace 1 on and the others off.
T1 :TRA ON
list traces_off is (T2 T3 T4 T5 T6 T7 T8)
for Trace in traces_off

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

7-7

Example Programs

Trace:TRA OFF
endloop

; Select single grid.
GRID SINGLE, SINGLE

; Select normal trigger mode. This will provide the
; user with a live display during the menu "set_up"
; to allow adjustment of acquisition parameters.
TRMD NORM

Set default values of count, high, and low if
count is currently undefined.
if type(count) =
count = 100
high = 10.0
low = -10.0

endif

Call the menu "set_up" to set the program choices.
call set_up

; Clear the value counters.
above = 0
inside = 0
below = 0
invalid = 0

; Stop any acquisitions currently in progress.
STOP

; Initialize status for the wait statement in "acquire".
status disable
status clear
status enable ’PROCESSING DONE 1’

end

41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

7-8

Example Programs

; This menu allows the operator to select the waveform
; parameter to be measured, the number of waveforms
; to be measured, and the upper and lower bounds
; for the parameter value

menu set_up
display ’Sample Program Setup’
display
var parm list parameters display ’Parameter ’
var count integer 1 to 5000 display ’Count ’
var high real -10 to 10 step 0.001 display ’Upper Limit’
var low real -10 to 10 step 0.001 display ’Lower Limit ’
display
display ’Apply signal to A1 and adjust.’
display ’Press RETURN to continue,’

end

procedure acquire
; Clear any previous status indicating processing is
; done for trace 1.
status clear ’PROCESSING DONE 1’

; Arm the input channel to initiate acquisition.
ARM

; Wait for processing to be completed on trace 1.
wait for any status or 30 seconds

; Check to see if a timeout occurred.
if cond(’TIMEOUT’)
; Print an error message on the screen.
print display ’Timeout occurred waiting for input.’

; Stop the program immediately.
PRMO OFF

endif
end

78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

7-9

Example Programs

!

; This procedure reads the value of the selected
; parameter and updates the appropriate counter¯

procedure update
; Get the value of the waveform parameter. An
; example of a string returned by this query is:

AMPL,1.5 V,OK
value = query(’Tl:PAVA?’ II parm)

if search(value, ’OK’) !=
; The parameter was OK.

; Extract the value from the result.
value = token(value, 3)

; Update the appropriate counter.
if value > high
above = above + 1

elseif value < low
below = below + 1

else
inside = inside + 1

endif
else
; Update the "invalid" count.
invalid = invalid + 1

endif
end

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

7-10

; This menu displays the result of the waveform
; measurements in a tabular form.

menu report
display’ Sample Program Report’
display
display ’# of waveforms value of’ II parm
display
display format(’ %4d
display format(’ %4d
display format(’ %4d
display format(’ %4d
display
display
display

end

above %g’, above, high)
%g to %g’, inside, low, high)
below %g’, below, low)
invalid’, invalid)

’Press HARDCOPY to print this report.’
’Press RETURN to continue.’

Example Programs

150
151
152
153
154
155
156
157
158
159
160
161
162

’ 163
164
165
166

Lines

1-5

7-8

10-11

13-20

22-23

25-26

These lines are comments which describe the purpose of the program.

The list statement is used to define the choices of waveform parameters
which can be measured by the program. It defines a list, "parameters", which
is a collection of items which can be identifiers, strings, or numbers. The
name "parameters" can be used to denote the entire list, as in the var state-
ment in line 87.

In this case, the list contains the entries "pkpk", "ampr’, "min", and "max".
The menu "set_up" sets the variable "parm" to one of these for use in the
query function in line 128.

These lines call the procedure "initialize" to set up variables and conditions in
the 7200A.

This is the main loop in the program. It calls the procedures "acquire" and
"update" the number of times specified in the variable "count". This variable
is selected by the user in the menu "set_up".

This sets the trigger to NORMAL, which provides a live display of data when
the menu "report" is called.

The menu "report" is called to display the results.

7-11

Example Programs

27

29-33

34-35

37-42

44-45

47-48

This end statement terminates the main program. Note that the main pro-
gram is always at the beginning of the program, before any menus or proce-
dures. Menus and procedures may appear in any convenient order after the
main program.

This is the beginning of the procedure "initialize".

This is a use of the "DEFINE" command, which is used to define the equa-
tion for trace 1. The prefix "TI" indicates that trace 1 is being defined. The
"EQN" keyword indicates that the equation for the trace follows the next
comma. The equation itself is always enclosed in double quotes. The
"MAXPTS" keyword indicates that the maximum number of points (horizontal
length of the waveform) is given after the next comma. For more information
about this command, see section 5 of this manual, "Mainframe Remote Com-
mands".

These lines adjust the traces so that trace 1 is on, and the others are off.
Line 38 turns trace 1 on using the "TRACE" command, described in section
5. Line 39 defines a list of traces, similar to the list of parameters defined in
line 8. Lines 40 through 42 are a loop which turns traces 2 through 8 off.

The loop is introduced in line 40 with the for statement. This defines a vari-
able, "Trace", which takes on the values of the list "traces_off" ("T2", "T3", ...
"T8") on successive iterations of the loop. Line 42 terminates the loop. The
line within the loop (41) is executed once for each different value of the vari-
able "Trace".

Line 41 is a command which begins with a variable, "Trace". Since it is a
command, it must start with an upper case letter. For this reason, the first let-
ter of the variable "Trace" is capitalized. Normally, character case does not
matter in identifiers. This is the only exception.

When a variable or expression appears in a command, it is replaced by
its value. This produces the commands "T2:TRA OFF", "T3:TRA OFF", etc.

This loop performs the same function as the loop in lines 4-8 of the first ex-
ample program. However, that loop uses a different technique for construct-
ing the "TRACE" command.

These lines use the "GRID" command to select a single grid.

These lines set the trigger to NORMAL. During the menu "set_up", which is
called in line 61, the user will be given an opportunity to connect the input to
channel A1 and adjust the controls to give a good view of the waveform. The
live display provided by NORMAL triggering will allow the user to see the ef-
fects of any changes made. Also, we will be sure that the trigger parameters

7-12

52-58

60-61

63-67

69-70

72-75

Example Programs

are set correctly so that in the procedure "acquire", data will be acquired af-
ter the "ARM" command.

These lines provide default values for the numeric variables set by the
menu "set_up". Lines 88-90 in that menu indicate how these variables
may be adjusted by the user. However, if they are undefined when the
menu is entered, they will be assigned the lowest value in the given
range, which is not a particularly good choice in this case.

Line 54 begins an if statement which determines if a value has ever been
stored in the variable "count". This is done using the type function, which is
described on p. 7-92. The value 2 is returned if the argument is an undefined
variable. Line 58 contains an endifstatement which determines the end of
the statements executed only if "count" is undefined.

Lines 55 to 57 set the values of the variables "count", "high", and "low". In ad-
dition to setting their values, these lines also indicate that the words "count",
"high", and "low" are used by this program to represent variables. These
words may be used anywhere in the program, and will always refer to the
same variables.

These lines call the menu "set_up". A menu defines a setup screen, as used
throughout the 7200A. While the menu is active, the softkeys and the knobs
below the center of the screen are assigned new meanings as defined by the
menu. When you are done setting values and want to continue with the rest
of the program, press the "Return"pj~for that purpose if necessary. See
p. 7-91 for more information. ~ O~ ./r~ ~/,t ~

These lines set to zero the variables used to count different values of ~e
waveform parameter selected in the menu "set_up".

These lines stop any acquisition which may be in progress and select single
trigger. The procedure "acquire" will use the "ARM" command to initiate an
acquisition. Before doing so, the system must be in a known state.

These lines prepare the conditions for the wait statement on line 108 in the
procedure "acquire". The purpose of that wait is to delay execution until the
next waveform is acquired and processed for display in trace 1.

In the first example program, the wait statement in line 15 is used to wait for
an action to complete by simply waiting for a fixed time. This tends to make
the program slow because you have to make the delay long enough to work
always. It is much better to wait until the event actually happens.

7-13

Example Programs

76

78-84

The 7200A provides status information as described in Section 4 of this
manuals. This information is used by the status and wait statements which
are described on pages 7-49 and 7-53.

Line 73 disables all status conditions. This is used prior to the status enable
statement in line 75 to make sure that only one status condition is enabled.

Line 74 clears all pending status conditions. This line and the preceding one
¯ (

are not strictly necessary, since these operatloo>are performed automatically
when the program is started. They are included for illustration only.

Line 75 enables the status condition called "PROCESSING DONE 1". This is
one of many different conditions supported by the status statement. Once a
status condition is enabled, a wait statement may be used to delay execution
until the associated event happens.

Note that not all status information described in section 4 of this manual is
supported by the status statement. The information which describes error
conditions is used by ICL to help control the program.

This line indicates the end of the procedure "initialize".

This is the beginning of the menu "set_up". The statements which appear in
a menu serve one of two purposes¯ They may place an entry in the main part
of the menu (where the grids are normally located) or next to a key.

In the main part of the menu, each entry occupies a line, begging at the top
of the menu and working downwards. If no lines are used, the full screen is
available for the display of traces. If there are 1 to 13 lines in the menu, the
menu occupies the lower half of the screen, and the upper half of the screen
is available for traces. If there are more than 13 lines, the menu occupies the
entire screen.

The power operator, ̂ , raises one number to the power of another number. 5 ^ 3 is the same
as 5 * 5 * 5, or 125. If the first operand is zero, the second must be greater than zero. If the
first operand is negative, the second must be an integer.

The rood operator returns the remainder which is left after dividing one number by another.
10 rood 3 is 1, since 10/3 is 3 with a remainder of 1.

7-14

6-Apt-89
7:32:31

SBop Run
Program

Example Programs

7200 Precision Digital Oscilloscope LeCroy

L

Sample ProQram Setup

Parameter ~’~
Count 1UU [
Upper Limlt 10.000 l
Lower Limit -10.000

I
Apply slgnat to AI and adjust.
Press RETURN bo continue, pkpk

Cancel ampl
Changes mtn

max
Return F~7~] Move BoxF~uNI / J

Figure 7.1 Sample Program Setup

In this case, there are 9 lines, so the upper half of the screen will contain a grid for displaying
trace 1. This allows the user to see the data while the menu is active.

While a menu is active, front panel controls are available for adjusting acquisition parame-
ters. This fact is used in this menu to allow the user to configure the input top provide a good
view of the wave form.

Figure 7.1 shows the 7200A’s screen during this menu.

85

86

87

The title of the menu, "Sample Program Setup" is indicated by this display
statement.

This line provides a blank line between the title and the rest of the menu.

The var statement is used to allow selection of a value for the variable
"parm" from the list "parameters", defined in line 8. As in other setup screens
in the 7200A, values are selected by rotating the continuous knob below the
center of the screen. The detented knob is used to move the cursor box from
one choice to another, as defined by the var statements in the menu. The
string after the word display is used to lable the choice.

7-15

Example Programs

88

89-90

91-93

94

96-99

100-102

104-105

This statement is used to set the variable "count" to be an integer between 1
and 5000. This is the number of waveforms which will be sampled by the
main loop, lines 13 to 20.

These var statements set the variables "high" and "low" to real values in the
range -10 to +10, with a precision of 0.001, or 1 mV.

The remaining lines are a message to the user. Note that this message must
be kept short so the number of lines in the menu is less than 14. This is nec-
essary to allow display of a trace in the upper half of the screen.

This line indicates the end of the menu "set_up".

This is the beginning of the procedure "acquire".

The status c/ear statement is used to clear the indication that processing is
complete for trace 1. This is done before acquiring another waveform to
make sure that the wait statement in line 108 waits for the next acquisition,
and not a previous one.

The "ARM" command indicates a single acquisition. When acquisition is com-
plete, processing as defined in line 35 is started. When the processing is
complete, the status "PROCESSING DONE 1" is set.

107-108

This statement waits for any enabled status condition to be set. In this case,
only one status is enabled: "PROCESSING DONE 1". If the condition is not
set within 30 seconds, the wait statement finishes and the next statement is
executed.

Note that there is another variation, wait for a/I status, which waits for all en-
abled status conditions to be set. For example, if the application required
processing for traces 1 and 2, we would enable both conditions "PROCESS-
ING DONE 1" and "PROCESSING DONE 2".

110-117

These lines begin with a test to see if the wait statement timed out. This is
done using the cond function, which determines if a particular condition
caused the wait statement to finish, as described on p. 7.53.

If the "TIMEOUT" condition is set, the cond function returns true. This causes
the statements prior to the endifin line 117 to be executed.

7-16

118

120-124

125-128

130

133-134

Example Programs

Line 113 prints a message near the top of the display to indicate that a trig-
ger was not received within 30 seconds.

Line 116 uses a "PROG_MODE" command to stop the program. This com-
mand, described in section 5, is normally used by a remote computer to con-
trol the operation of an ICL program in the 7200A. However, it can also be
used by an ICL program to halt itself, since setting the mode to "off" has that
effect.

This line indicates the end of the procedure "acquire".

This is the beginning of the procedure "update".

This statement uses the query function to determine the value of a waveform
parameter. The argument is a string composed by joining the string
’TI:PAVA?’ with the name of the parameter. This query, "PARAME-
TER_VALUE", is described in section 5. Almost any query described in sec-
tion 5 or 6 of this manual may be given. See p. 7-80 for more details on the
query function.

The resulting string is stored in the variable "value". For the parameter
"pkpk", this string might be ’PKPK,1.5 V, OK’o the structure of this string is
used by the search and token functions in the next few lines of the program.

This if statement looks for the string ’OK’ in the query result. If present, lines
131 to 143 are executed. If not, lines 145 and 146 are executed instead. This
field in the parameter result is called the "state". It is used to indicate the
quality of the result. The value ’OK’ indicates that the parameter was com-
puted without any problems.

The token function is used to extract the number from the string returned by
query in line 128. The second argument to token is the number of the token
to be extracted. Tokens include words, numbers, and other single charac-
ters. In the example above, "PKPK" is the first token, the comma is the sec-
ond, "1.5" is the third, and so on.

The number extracted by the token function is stored back into the same vari-
able, "value". Note that "value" was a string when assigned in line 128, but
now it is a number. Variables in ICL are not of any fixed type, such as integer
or string. Instead, they take on the type of the quantity which is stored in
them. When necessary, they are converted from one type to another, as de-
scribed in the section "Automatic type conversion" on p. 7-24.

7-17

Elements of a Program

136-143

144

145-146

147

148

150-154

155

156

157-160

163-165

166

These statements use the if, elseif, else and endifto determine the counter
to be incremented depending on the value of the waveform parameter.

If the relation in the if statement is true, the statements prior to the elseifare
executed. If not the relation following elseif is tested, If it is true, the state-
ments prior to the else are executed. If that relation is false, the statements
between the else and the endifare executed.

This else statement ends the statements which are executed if the string
’OK’ was found in the query result ion line 130.

These lines add 1 to the variable "invalid" to indicate that the waveform pa-
rameter was not valid.

This else statement ends the statements which are executed if the waveform
parameter was invalid.

This line indicates the end of the procedure "update",.

This is the beginning of the menu "report". This menu is used only to present
information to the user. It does not contain any var statements for adjusting
the values of variables.

This line gives a title for the report.

This display statement leaves a blank line after the title.

These statements use the format function to produce a tabularized list of the
results. The first argument is a string which controls the location and format
of the values printed. The remaining arguments supply the values to be
printed. The format function is described in detail on p. 7-69.

The remaining lines are a message to the user. Note that this message must
be kept short so the number of lines in the menu is less than 14. This is nec-
essary to allow display of a trace in the upper half of the screen.

This line indicates the end of the menu "report".

Elements of a Program
A program consists of many components such as constants, variables, expressions, com-
mands, and statements. If you already have experience with a programming language, most
of the components will be familiar.

7-18

Elements of a Program

Numeric Constants

ICL supports two different types of numbers: integers and real numbers. Integers are strings
of the digits 0 to 9, possibly preceded by a minus sign. The allowed range of an integer is -
2147483648 to 2147483647.

Integers may be expressed in different number bases by preceding them with a pound sign
(#) followed by "H" for hexadecimal, "Q" for octal, or "B" for binary. The prefix "Ox" is also ac-
cepted to denote hexadecimal, as in the C programming language. For example, #HFF,
#Q377, and #B11111111, and)xFF are all 255.

Real numbers are used to represent very large numbers, or numbers with fractional parts.
Some examples are 1.23, -200.01, 2E-5 and 6.02e23. The last two examples use scientific
notation. The number following the "E" or "e" os the power of ten, and may be negative. Real
numbers have approximately seven significant digits, with an allowed exponent range of -38
to 38.

Strings

A string is a sequence of characters enclosed in single quotes. A quote may be included in a
string by placing two quotes next to each other. Double quotes are not used by ICL defining
strings. Some examples of strings are "hello" and "You don’t say!"

Identifiers

Identifiers are used for naming variables and procedures (subroutines). An identifier is any
sequence of letters, digits, and underscores, provided that the first character is not a digit.

ICL makes no distinction between upper case and lower case letters in identifiers. Therefore,
the following identifiers are equivalent: Smallest_Value, SMALLEST_VALUE, and small-
esLvalue.

Note that upper vs. lower case is used to distinguish statements from commands, discussed
below. Sometimes you will be required to begin an identifier with a lower case letter (as in an
assignment statement), and sometimes you will be required to begin it with an upper case let-
ter (as in command).

ICL does not limit the number of characters in an identifier. However, it is a good idea to
keep the identifier shorter than a line on your editor’s screen, since most statements are re-
quired to fit on a single line.

Variables

Variables are used to hold values. They can hold integer or real numeric values, or strings.
They cam also take on values defined by the/ist statement, described on p. 7-44.

7-19

Elements of a Program

Variables are not declared in ICL. Instead, they are recognized by their use. Any statement
which can change the value of a variable, such as an assignment or an input statement, de-
fines a variable.

Variables are global in scope. That is, if the same name is used for a variable in more than
one part of the program, each use refers to the same variable. This includes uses of vari-
ables in different procedures.

The type of a variable is not fixed, but may change whenever its value changes. Thus, it is
possible for a single variable to have the values -1, 3.5, and "error" at different times during
execution of a program.

Before a value is assigned to a variable, it is "undefined". Attempting to use the value of an
undefined variable will result in an error message and program termination.

Arrays
Arrays are used to hold collections of values. Like variables, they can hold integer or real nu-
meric values, strings, or values defined by list statements.

Arrays are declared using the array statement, which defines the type of values which can
be stored as well as the number and range of subscripts.

Each array may be declared only once in a program. The array statement must appear be-
fore any uses of array. The scope of an array is from its declaring array statement to the end
of the program.

When an array is declared it is filled with values depending on its type. Integer and real ar-
rays are filled with zeros. List arrays are filled with the first element of the list. String arrays
are undefined. An attempt to use a string array element before storing a value in it will result
in an error message and program termination.

Elements of an array can be used in most places where variables can be used. An array ele-
ment is indicated by the name of the array, followed by a series of subscript expressions en-
closed in square brackets and separated by commas, as in data [i,j+5]. If the number of
subscripts does not agree with the declaration for the array, an error message is given and
compilation is terminated. A subscript out of range results in a run-time error and execution
is terminated.

Expressions
Expressions allow you to combine values (in constants, variables, and array elements)
form new values. Expressions in ICL are very similar to those found in other programming
languages.

7-20

Elements of a Program

Numeric Operators

The arithmetic operators addition, subtraction, multiplication, and division are represented by
the usual symbols: +,-,*,and ?. Division by zero is not permitted. Note that division always
produces a real result, and never truncates to the next lower integer. The trunc function may
be used for that purpose if necessary. See p. 7-91 for more information.

The power operator, ̂ , raises one number to the power of another number. 5 ^ 3 is the same
as 5 * 5 * 5, or 125. If the first operand is zero, the second must be greater than zero. If the
first operand is negative, the second must be an integer.

The mod operator returns the remainder which is left after dividing one number by another.
10 mod 3 is 1, since 10/3 is 3 with a remainder of 1.

Several operators are available for logical combination of values. These operators act bit-
wise on integer values. That is, each binary digit in the two values is combined inde-
pendently to produce a binary digit in the resulting value.

The and operator produces a binary digit 1 wherever both values have binary digits 1 in the
same position. It produces a binary digit 0 in all other cases, as illustrated in the following ex-
amples:

0 and 0 = 0
0and 1 =0
1 and 0 = 0
1 and 1 = 1
#B0011 and #B0101 = #B0001

The or operator produces a binary digit 0 wherever both values have binary digits 0 in the
same position. It produces a binary digit 1 in all other cases, as illustrated in the following
examples:

0or0=0
0or1 = 1
1 or0= 1
lor1=1
#B0011 or #B0101 = #B0111

The xor operator (exclusive or) produces a binary digit 1 wherever the values have different
binary digits in the same position. It produces a binary digit 0 if the values have the same bi-
nan/digit, as illustrated in the examples below. Note that a value may be ones comple-
mented using an exclusive or with #HFFFFFFFF.

0 xor 0 = 0
0xorl = 1
1 xor0= 1

7-21

Elements of a Program

1 xorl =0
#B0011 xor #B0101= #B0110

String Concatenation Operators
Two strings may be concatenated (joined) using the "1" or "lr’ operators. The result of
’Hello’l’world’ is ’Helloworld’.

You might want to join two strings together with a space between them. In the preceding
example, ’Hello world’ could be produced by first concatenating ’Hello’ and ’ ’, and then
concatenating the result with ’world’, as in ’Hello’l’ ’l’world’ .

The "11" operator makes this easier. It joins the two strings together with a single space be-
tween them. The result of ’Hello’ II ’world’ is ’Hello world’.

Relational Operators
Relational operators compare values in order to make decisions in a program. These opera-
tors compare two values and produce a result which is either TRUE (represented by 1)
FALSE (represented by 0).

The standard relational operators are the same as in the C language:

a I= b TRUE if a is not equal to b
a < b TRUE if a is less than b
a <= b TRUE if a is less than or equal to b
a = b TRUE if a is equal to b
a > b TRUE if a is greater than b
a >= b TRUE if a is greater than or equal to b

These operators compare two values of the same type: integer, real, or string. For integer
and real values, the meanings are familiar. For strings, normal dictionary ordering is used,
except that all upper case letters are considered to be "less than" all lower case letters.

In cases where the two values are different, they are first converted to the same type accord-
ing to the following rules:

¯ If one is numeric and the other is string, the string is checked to see if it
contains a number. In this case, the string is converted to a number.

¯ If one is numeric and the other is string, but the string does not contain a
number, the numeric value is converted to a string as it would be for
printing.

¯ If one is integer and the other is real, the integer value is converted to real.

If a comparison must be done numerically, adding 0 to both arguments will ensure that they
are numbers. Similarly, if a string comparison is required, concatenate an empty string. For
example:

7-22

Elements of a Program

a+0 <= b+0 forced numeric comparison
al" = br’ forced string comparison

In addition to the standard relational operators, ICL has a set of approximate relational opera-
tors which are useful for determining if two real numbers are almost the same, or if two
strings are the same except for character case and spacing:

a ~! b TRUE if a is approximately not equal to b

a ~< b TRUE if a is approximately less than b

a < b TRUE if a is approximately less than or equal to b

a ~-" b TRUE if a is approximately equal to b

a~> b TRUE if a is approximately greater than b

a ~>= b TRUE if a is approximately greater than or equal to b

Like the standard relational operators, the approximate relational operators compare two val-
ues of the same type: integer, real, or string. The same rules are used to convert the types of
the values if necessary.

The meaning of "approximate" depends on the type of the values. For integers, there is no
difference between the approximate and standard relational operators. For reals, two values,
a and b, are considered approximately equal if the absolute value of (a-b)/(a+b) is less
or equal to 0.000001.

Strings are compared ignoring differences in character case and number of spaces by first
converting both strings to a standard form, and then performing the corresponding standard
comparison. The conversion changes lower case letters to upper case, removes leading and
trailing whitespace, and changes each sequence of multiple whitespace characters to a sin-
gle space. This conversion may also be performed manually with the built-in function upper,
described on p. 7-93.

Order of Operations
When an expression involves more than one operator, you can control the order in which the
operators are applied using operator precedence. The operators are listed from highest
precedence to lowest precedence in the table which follows.

highest Power operator ^
Multiplying operators * / mod and
Adding operators + - or xor
String operators I II

lowest Relational operators ! = < < = =

7-23

Elements of a Program

Expressions are evaluated by applying operators in order from highest to lowest prece-
dence. For example, in the expression 5 + 2 * 3, the multiply is done before the add, result-
ing in the value 11. Parentheses may be used to control the order of evaluation. For
example, the expression (5+2) * 3 indicates that the addition is to be performed first. In this
case, the result is 21.

When several operators of equal precedence appear in an expression, they are applied left
to right. For example, 5 + 3 - 2 - 1 is equivalent by adding 5 + 3, then subtracting 2, and fi-
nally subtracting 1, with a result of 5.

Built-In Functions

ICL provides built-in functions to compute many different values. Real to integer conver-
sions, trigonometric functions, and string search and extraction functions are among those
available. See p. 7-55.

Automatic Type Conversion

Automatic type conversion eliminates the need to change values explicity from one type to
another. This concept, introduced above in the discussion of relational operators, is used ex-
tensively in ICL.

Inputs to functions and operators, values to be stored in array elements, and array sub-
scripts must be of a particular type. If the value actually supplied is not already of the correct
type, it is converted according to the following rules:

¯ If a string is supplied and an integer or real is required, the string is
examined to see if it contains a number. If the string contains a number, it
is converted to a number. If it can’t be converted to a number, an error is
reported and the program is terminated.

¯ If an integer is supplied and a string is required, the number is converted
to a string just as it would be for printing.

¯ If an integer is supplied and a real is required, the integer is converted to
the corresponding real value.

¯ If a real is supplied and an integer is required, the real value is truncated
to the nearest integer which is closer to zero. (see the discussion of the
trunc function, p. 7-91 for more details.)

Commands and Statements
An ICL program consists of lines of text. With few exceptions, each line contains one com-
mand or statement. (The exceptions are blank lines, which are ignored, and list statements,
which may span several lines.) Keep each line short enough to fit onto one line of your edi-
tor’s screen.

7-24

Elements of a Program

A command instructs the 7200A to set operating conditions or initiate actions. The com-
mands are described in sections 5 and 6 of this manual. In addition to appearing in an ICL
program, a command may be sent through the GPIB or RS-232 interface.

A statement controls the sequence of commands executed by an ICL program. Statements
are described in the following section. They cannot be given to the 7200A through the GPIB
or RS-232 interface.

Statements are distinguished from commands by the first non-blank character of the line in
which they appear. Statements always start with a lower case letter. Commands start with
an upper case letter or an asterisk(*).

Command Preprocessing
The 7200A processes commands as though they were received via GPIB or RS-232. Before
the normal processing begins, however some additional preprocessing takes place when a
command originates in an ICL program.

The 7200A scans each command, looking fro opportunities to make substitutions. If a vari-
able or array element is found in the command, its current value is substituted. If an expres-
sion is found, it is evaluated, and the result is substituted.

Numeric constants by themselves are not substituted. For example, 1.00000 is never
changed to 1, even though it is shorter or might be considered more correct.

Because of command preprocessing, you will want to choose your variable names carefully.
For example, you may want to generate the command.

GRID SINGLE

However, if you have a variable called SINGLE, the currect contents of the variable will be
substituted. To prevent this, simply place the word SINGLE in quotes:

GRID ’SINGLE’

Since double quotes are not used by ICL in defining strings, they may be used in commands
without affecting substitutions. For example:

equation = ’A1 +A2’
T1 :DEF EQN,"equation"

This sequence assigns the strings ’A1 + A2’ top the vadable "equation". Since double quotes
are used in the command defining the equation for trace 1, substitution occurs to produce
the command

TI:DEF EQN,"A1 + A2"

7-25

Elements of a Program

Procedures and Menus
A procedure performs actions. A procedure begins with a procedure statement and ends
with an end statement. Within a procedure, all commands and statements except the display
and var statements may appear.

A menu describes a setup screen which is used wby the operator to change values of vari-
ables and initiate actions. A menu begins with a menu statement and ends with an end state-
ment. Within a menu, only the call, display, and varstatements are allowed.

The main program appears at the beginning of the source file, consists of a series of com-
mands and statements, and ends with and end statement. Procedures and menus appear af-
ter the main program in any convenient order.

Procedures and menus can be called from the main program, or other procedures or
menus.The one exception is that a procedure should not call itself, directly or indirectly, this
technique, called recursion, is not generally of value in a language in which all variables are
global.

Comments
Comments begin with a semicolon (;) and continue to the end of the line. A comment may ap-
pear on any line of the program, and may either occupy an entire line or part of a line to the
right of a command or statement. Comments have no affect on the program, and if particular
do not make the program execute more slowly.

Blank lines and initial whitespace (indention) may be inserted as desired to make the pro-
gram easier to understand.

7-26

Statements

The statements provided by ICL are listed by category in the following table:

cateoory statement

expressions array
list
assignment

flow of control call
for...endloop
while...endloop
break
if...elseif...else...endif
procedure
return
end

input/output input
print

events status
wait

interaction menu
call
display
var

DurDose

define an array
define an enumerated list
assign a value to a variable

call a procedure or menu
iteration over a set of values
iteration while a condition is true
early termination of foror while loop
conditional execution
define a procedure
retum from procedure
end of program, menu, or procedure

input text from host computer
print to display/host/hardcopy

GPIB status enable/disable/clear
wait for status change or time interval

define a menu for user interaction
attach a procedure or menu to a key
add a line of text to a menu
add a variable to a menu for modification

comment ; to end of line documentation

The following sections descdbe each statement in detail. Statements are listed alphabeti-
cally. With the exception of the list statement, each statement must fit on a single line.

7-2,?

ICL statement

array

Purpose: Declare an array.

Format: array type array_name [expr: expr, expr: expr...]

Type is integer, real, string, or the name of a list previously defined in the
program. Each element of the array is of the indicated type.

The range of each subscript is given by two expressions separated by a
colon. Subscripts are integer values. If real values are used, they are trun-
cated toward zero.

The number of subscripts is defined by the number of pairs of expres-
sions. The correct number of subscripts must be used when an element of
the array is referenced.

Examples: array Integer data [0:5, -10:1 O]

The array data is defined to be of type integer, having two subscripts. The
first subscript can take one of 6 values: 0 through 5. The second can take
on of the 11 values: -10 through 10. Therefore there are 66 elements in
the array.

list colors Is (red orange yellow green blue violet)
array colors select [0:3]
select [3] = next (select [0])

The array select has four elements, each from the list of colors. All four ele-
ments are set by the array statement to the value red, the first entry in the
list. The assignment then sets the last element to orange, using the next
function and the current value of the first element.

arrray real hue [ord (colors, red) : ord(colors, violet)]
for h In colors

hue [ord(colors, h)] = 2.43
endloop

This example uses the ordfunction to define the range of subscripts for an
array. In this case, the array ccontains one element for each entry in the
list colors. The loop uses the ord function to set each element of the hue
array to 2.43.

7-28

ICL statement

array (continued)

Notes:

See Also:

When an array is first declared, it is filled with values depending on its
type. Integer and real arrays are filled with zeros. List arrays are filled with
the first element of the list. String arrays are undefined. An attempt to use
a string array element before storing a value in it will result in an error mes-
sage and program termination.

Only one array statement may appear for each array in the program. How-
ever, an array statement may be executed more than once. This would
happen if it is in a loop or in a procedure which is called more than once.

If an array statement is re-executed with identical subscript expressions,
no change is made to the array. If the subscript expressions are different,
the array reinitialized. In this case, all previous values are lost.

Array elements can be changed only by assignment statements. This
means that an array element cannot be used in an input statement, or as
the loop variable in a for statement.

An array element may be used to compute any expression wherever a vari-
able may be used. Array elements may also appear in commands, and are
replaced by their current value before passing the command to the 7200A
for further processing.

list statement, built, in functions next and ord

7-29

ICL statement

assignment

Purpose:

Format:

Examples:

Notes:

Assign a value to a variable. The value may be any valid expression as de-
scribed in the section =Elements of a program".

In addition to assigning a value to the variable, this statement also sets the
type of the variable to that of the expression.

variable = expression

1=3
nexLvalue = currenLvalue + 1
y = 5.0 * sln(x * pi / 180)
error_clNcription = ’Invalid value’

This statement also serves to define the variable.

The variable must begin with a lower case letter in this case to distinguish
the assignment statement from a GPIB command.

7-30

ICL statement

break

Purpose:

Format:

Examples:

Note:

See Also:

Terminate execution of a loop immediately.

break

for I : 1 to 100
call measure_something
If error_was_detected
break

endif
endloop

while I < 100
call measure_something
if error_was_detected
break

endif
endloop

After the break, the next statement which is executed is the first statement
after the endloop of the innermost loop which contains the break.

If a break statement is used to terminate a forloop, the iteration variable is
left at the value it had when the breakwas executed.

for, while

7-31

ICL statement

call

Purpose:

Format:

Examples:

Note:

Sec Also:

Execute a menu or procedure.

Install a menu or procedure in a menu to allow the operator to execute the
menu or procedure by pressing a key.

ca//name
call name key k display expression

The first form of the call statement is used in the main program or a proce-
dure. The procedure or menu is executed immediately.

The second form of the call statement is used in a menu. The procedure
or menu is executed when the operator presses the indicated key.

Name is the name of any menu or procedure.

Keys 0 to 9 are on the left side of the display, with 0 at the top. Keys 10
and 11 are on the right side of the display, with 11 at the bottom.

The expression following the word display is evaluated as a string to deter-
mine the label to write next to the key. It should be no more than 13 char-
acters in length.

call measure_something

call procedure to reinltlalize key I display ’Initialize’
call menu_to_set_size key 2 display ’Set Size’

When a procedure or menu is called from the main program or another pro-
cedure, the next statement after the call statement is executed upon return.

When a procedure or menu is called from a menu, the menu is re-exe-
cuted upon return.

The = display expression" clause is optional. If it is not present, the name of
the menu or procedure is used instead.

menu, procedure, return, var, call

7-32

comment

ICL statement

Purpose:

Format:

Examples:

Note:

Provide documentation for a program. A comment begins with a semicolon
and continues to the end of the line,

; any text

; This comment Is an entire line,

x = 50 * i ; Set x to the expected value.

A semicolon enclosed in quotes does not start a comment.

7-33

ICL statement

display

Purpose:

Format:

Examples:

Note:

See Also:

Add a line of text to a menu for documentation purposes.

display string_expression

display ’Test Set Up’

If the string_expression is not given, a blank line is displayed.

The number of lines in a menu determines the format of the screen. Each
display statement adds one line to the display. Each var statement without
the key option also adds one line to the display.

If there are no lines defined in the menu, only the key labels are replaced,
and the full screen is available for the display of traces. If there are 1 to 13
lines in the menu, the menu occupies the lower half of the screen, and the
upper half of the screen is available for traces. If there are 14 or more lines
defined in the menu, the menu occupies the entire screen.

menu, var

7.34

ICL statement

else

Purpose:

Format:

Examples:

See Also:

Indicate the statements to be executed if the expression of an/fstatement
is false,

else

if expression
; statements executed If the expression Is true

else
; statements executed If the expression is false

endif

If expression1
; statements executed if expression1 is true

elseif expression2
; statements executed If expression2 is true and expression1 is

false
else
; statements executed If both expressions are false

endif

if, elseif, endif

7-35

ICL statement

elseif
Purpose:

Format:

Examples:

See Also:

Indicate a new test and statements to be executed if the expression of an
if statement is false.

elseff

If expresalonl
; statements executed If expresslonl Is true

elself expreselon2
; statements executed If expresslon2 Is true and expresslonl Is

false
else
; statements executed If both expressions are false

endlf

This example is the same as

If expreselonl
; statements executed If expresslonl Is true

else
If expresslon2
; statements executed If expresslon2 Is true and expresslonl Is

false else
; statements executed If both expreselons are false

endlf
endlf

if, else, endif

7-36

ICL statement

end
Purpose:

Format:

Examples:

Note:

See Also:

Indicate the end of a program, procedure, or menu.

end

procedure measure_something
; Perform a measurement and store
; the result in a variable.

end

The main program always appears before any procedures or menus, so
an end statement must appear before the first procedure or menu.

menu, procedure

7-37

ICL statement

endif

~rposc:

Format:

Examples:

See Also:

Indicate the end of an/fstatement.

endif

If expression
; statements executed if the expression is true

else
; statements executed if the expression Is false

endff

If expresslonl
; statements executed If expreselonl is true

elself expresslon2
; statements executed If expresslon2 Is true and expresslonl Is false

else
; statements executed If both expresslons are false

endlf

if, else, elseif

7.38

endloop

ICL statement

Purpose:

Format:

Examples:

See Also:

Indicate the end of a foror while loop.

endloop

for I = 1 to 100
; statements

endloop

for, while

7-39

ICL statement

for

Purpose:

Format:

Examples:

N ote:

Repeatedly execute a series of statements. The for loop uses a control
variable which takes on different values on each iteration of the loop.

for variable = expression1 to expression2
for variable = expression1 to expression2 stepexpression3
for variable in list_name

In the first two forms of the for statement, the expressions should be nu-
meric. In the first iteration, the control variable is set to expression1. On
successive iterations, the step value is added to the control variable. The
loop terminates when the control variable is greater than expression2. The
step value is 1 in the first form of the for statement, and expression3 in the
second form.

In the third form of the for statement, the control variable takes on the val-
ues of the elements of the indicated list. In the first iteration, it is set to the
first element of the list. In the second iteration, it is set to the second ele-
ment of the list, and so on.

for I = 1 to 100
; statements

endloop

for I = 1 to 100 step 10
; statements

endloop

list traces Is (T1 T2 T3 T4 T5 T6 T7 TS)
for trace in traces
Trace: TRA OFF

endloop

This statement also serves to define the control variable.

In addition to assigning values to the control variable, this statement also
sets the type of the control variable.

7.40

ICL statement

for (continued)

See Also:

When real expressions are used, care should be taken to ensure that
rounding error does not cause unexpected results. For example, consider
the following statement:

for i = 1 to 2 step 0.001

The variable i is expected to take on the values 1.000, 1.001, 1.002
1.999, 2.000. However, rounding error involved in the real additions might
make the 1001st value be 2.000001. In this case, since the control vari-
able is greater than the final specified value, the loop would not execute
the last time. A better way to write this loop would be:

for i = 1 to 2.0005 step 0.001

break, endloop, list, while

7-41

ICL statement

if

Purpose-

Format:

Examples:

Note:

See Also:

Select statements for execution.

if expression

If expression
; statements executed If the expression is true

endlf

if expression
; statements executed if the expression is true

else
; statements executed if the expression is false

endif

If expresslonl
; statements executed if expresslonl Is true

elself expresslon2
; statements executed If expresslon2 Is true and expresslonl Is

false
else
; statements executed If both expreseions are false

endlf

The expression in an/fstatement may be the result of a relational operator
(described in the section =Elements of a Program") or may be any numeric
expression. For numeric expressions, =true" means non-zero, and =false"
means zero.

else, elseif, endif

7-42

ICL statement

input

Purpose:

Format:

Examples:

Note:

See Also:

Read from an external device. Data is read from the specified device and
transferred to the indicated variable.

input variable from device

Device is either host or hardcopy. Host indicates a computer connected
via GPIB or RS-232, as determined in the Communication Setup screen.
Hardcopy indicates the device selected in the Hardcopy Setup screen.
Note that input from the centronics parallel port is not supported.

Input val from host

This statement also serves to define the variable.

The data is initially treated as a string. However, if the contents permit, it
may be used as a numeric value, since the automatic type conversion
process will be applied.

print

7-43

ICL statement

list

Purpose"

Format:

Examples:

Note:

See Also:

Define a list. A list is similar to an enum type in C or a scalar type in Pas-
cal. It consists of a series of items delimited by whitespace. The elements
of the list may be identifiers, numeric constants, or strings.

list lisLname is (element1 element2 element3 ... elementN

list colors is (red orange yellow green blue violet)

list allowed_values is (1 2 5 10 20 50 100 200 500 undefined)

list error_messages Is (
no_error
’value too large’
’value too small’
’value is not a number’

)
An identifier used in a list may not be the name of a variable, array, proce-
dure, or menu defined by the program, and may not be the same as any
keyword or built-in function used by the language.

The same entry may appear in more than one list, but may not appear
more than once in the same list.

The list statement may span several lines. However, the name of the list,
the keyword is, and the left parenthesis must be on the first line.

Elements in a list need not all be of the same type. Some may be numeric,
others may be identifiers, and still others may be strings. The type built-in
function may be used to determine what type of element has been as-
signed to a variable before it is used.

for, var, built-in functions first, last, next, ely/, prey, type

7.44

ICL statement

menu
Purpose:

Format:

Examples:

Note:

See Also:

Begin definition of a menu.

menu name

; This Is the main program.
list test_list is (random linear quadratic)
call set_up_test

end

menu seLup_test
display ’Test Set Up’
display
var t list tesLIist
varn Integer I to 100
var high real 0 to 10.0 step 0.01
var low real 0 to 10.0 step 0.01
end

display ’Test to perform ’
display ’Number of times ’
display ’high
display ’low

Only menu statements (call, display, and var) can appear in a menu. A
menu is terminated with an end statement.

The menu returns when the =Return" or =Cancel Changes" key is pressed.

While a menu is being displayed, all front-panel controls are available for
use. This allows adjustment of acquisition and display parameters. How-
ever, entering a setup screen (e.g. by pressing =DISPLAY" on the 7242)
will terminate the menu and deactivate the front panel.

call, procedure, retum, display, var

ICL statement

print

Purpose:

Format:

Examples:

See Also:

Print a string to an external device or the display.

print device expression
print/n device expression

The first form writes the expression without an end of line character. The
second form writes an end of line character after the expression.

Device is either host, hardcopy, or display. Host indicates a computer con-
nected via GPIB or RS-232, as determined in the Communication Setup
screen. Hardcopy indicates the device selected in the Hardcopy Setup
screen. Display indicates a one-line message area at the top of the CRT.

x=lO
print display ’The value Is’ II x
prlntln hardcopy ’YES’

prints The value is 10
prints YES

input

7-46

procedure

ICL statement

Purpose:

Format:

Examples:

Note:

See Also:

Begin definition of a procedure.

procedure name

procedure waste_time
for I = 1 to 1000
endloop

end

A procedure should not call itself, either directly or indirectly.

Values may be passed to and from procedures by using variables.

menu, ca~I, retum

7-47

ICL statement

return

Purpose:

Format:

Examples:

Note:

See Also:

Return from a procedure.

return

procedure measure_something
; statements
If error_occurred
return

endlf
; statements

end

A return statement may only appear in a procedure, and is not necessary
at the end of a procedure.

ca//, procedure

7.48

ICL statement

status

PUrl)OSC: Enable, disable, or clear status conditions.

Status conditions indicate the state of the 7200A, and are a subset of the
GPIB status bytes defined in section 4 of this manual.

Conditions supported by the status statement are:

AUTO SETUP DONE Auto Setup has completed.

CAL DONE plugin Calibration has completed for the plugin
indicated. Plugin is one of A or B.

HARDCOPY DONE Hardcopy has completed.

MAX SWEEPS trace The maximum number of sweeps set for a
history function has been accumulated on the
indicated trace. Trace is one of 1,2, 3, 4, 5,
6, 7, or 8.

PROCESSING DONE trace Processing has completed for one display
update of the indicated trace. Trace is one
of 1, 2, 3, 4, 5, 6, 7, or 8.

RECALL DONE Recall from floppy disk has completed.

RECORD DONE

REPLAY DONE

Store to disk during Record Traces has
completed.

Recall from disk during Replay Traces has
completed.

SELF-TEST DONE Self testing has completed.

STORE DONE Store to floppy disk has completed.

TRIGGER plugin Data has been acquired from the indicated
plugin. Plugin is one of A or B.

7-49

ICL statement

status (continued)

Format:

Examples:

See Also:

status enable condition
status disable
status disable condition
status clear
status clear condition

Condition is a string expression which indicates one of the conditions de-
scribed above.

The following is an example of the recommended order in which status
statements should be used to trigger an acquisition and wait for process-
ing done on all traces.

list processlng_done Is (
’PROCESSING DONE 1’
’PROCESSING DONE 2’
’PROCESSING DONE 3’
’PROCESSING DONE 4’
’PROCESSING DONE 5’
’PROCESSING DONE 6’
’PROCESSING DONE 7’

)
STOP

status disable
status clear
for c In processing_done
status enable c

endloop
ARM
wait for all status or 30 seconds

; define the list of
; processing done status
; required for the problem

: stop pending acqulsltlons
; and go to single trigger mode
; dlsable all status
; clear all status
; enable all processlng
; done status

; arm all Input channels
; wait for all enabled status
; or a tlmeout of 30 seconds

wait, built-in function cond, Section 4: Status Messages

7-50

ICL statement

var

Purpose:

Format:

Install a variable in a menu to allow the operator to set the value during
execution of the menu.

var name variable_info display expression
var name variable_info key k display expression
var name variable_info key kl and k2 display expression

The first form of the varstatement places the variable in the main body of
the menu. This allows the operator to change the value using the cursor
knobs below the display.

The other forms of the var statement place the variable next to a softkey.
Keys 0 to 9 are on the left side of the display, with 0 at the top. Keys 10
and 11 are on the right side of the display, with 11 at the bottom.

variable._info is one of:
string
list lisLname
integer expression1 to expression2
real expression1 to expression2 step expression3

The variable_info is used to describe the type of variable and its possible
values. The string form makes the variable a string. When the cursor box
is moved onto the variable’s value, the =Edit Text" softkey appears in the
upper lelt corner of the display. Pressing this key allows you to edit the
string in the same manner as for other strings in the 7200A.

The listvariable_info form means the variable is to be a value from the
named list.

The integervadable_info form makes the variable an integer. The range of
values is indicated by expression1 (the lower limit) and expression2 (the
upper limit).

The realvariable_info form makes the variable a real number. The range
of values is indicated by expression1 (the lower limit) and expression2 (the
upper limit). Expression3 indicates the resolution of the value. For exam-
ple, if expression3 were 0.01, the value would be displayed with two digits
to the right of the decimal point.

7-51

ICL statement

var (continued)

Examples:

Note:

See Also:

Only list and integer variables may be attached to keys. If only one key is
assigned to the variable, the variable is increased each time the key is
pressed. When the maximum value is reached, the next key press set the
variable to the minimum value.

If two keys are assigned to a variable, the first key increases the value,
and the second key decreases the value. In this case, the first key should
be even numbered, and the second key should be one greater than the
first key.

The expression following the word display is evaluated as a string to deter-
mine the label to write in the menu or next to the key. Key labels should be
no more than 13 characters in length.

var t list test_list display ’Test to perform ’
var n integer I to 100 display ’Number of times ’
var high real 0 to 10.0 step 0.01 display ’high
var number integer 1 to 10 key 0 and I

When the menu is entered, variables which are attached to the menu are
examined. Any undefined variables, or variables which currently have val-
ues which can’t be converted to the type indicated in the varstatement are
assigned a value. For lists, this is the first element in the list. For integers
and reals, it is the lower limit. For strings, it is an empty string.

The =display expression" clause is always optional. If it is not present, the
name of the variable is used instead.

The number of lines in a menu determines the format of the screen. Each
display statement adds one line to the display. Each var statement without
the key option also adds one line to the display.

If there are no lines defined in the menu, only the key labels are replaced,
and the full screen is available for the display of traces. If there are 1 to 13
lines in the menu, the menu occupies the lower half of the screen, and the
upper half of the screen is available for traces. If there are 14 or more lines
defined in the menu, the menu occupies the entire screen.

menu, display, call

%52

ICL statement

wait

Purpose:

Format:

Examples:

Note:

See Also:

Wait for conditions and/or a predetermined Ume.

wait for any status
wait for any status or expression seconds
wait for all status
wait for all status or expression seconds
wait for expression seconds

wait for any status
wait for any status or 30 seconds
wait for all status
wait for all status or 1.5 seconds
walt for 0.2 seconds

The expression must be a numeric quantity. If it is less than or equal to
zero, a small delay will occur.

The delay indicated by ~e expression is approximate.

status, built-in function cond

%53

ICL statement

while

Purpose" Repeatedly execute a series of statements. The expression is evaluated
before each iteration. If it is true, the statements preceding the matching
endloop are executed. If it is false, execution continues with the statement
after the matching endloop.

Format: while expression

Examples: while I < 100
I=l+i

endloop

Note: The expression in a while statement may be the result of a relational op-
erator (described in the section =Elements of a program") or may be any
numeric expression. For numeric expressions, "true" means non-zero, and
=false" means zero.

A break statement may be used to terminate a while loop.

See Also: endloop, break

7.54

Built-in Functions

The functions provided by ICL are listed by category in the following table:

cateqory function

math abs
exp
log
log10
sign
sqrt

tdg acos
asin
atan
atan2
cos
sin
tan

conversion ceil
chr
floor
round
trunc

string format
left
mid
right
search
strlen
token
upper

list first
last
next
ord
prev

purpos~

absolute value of a numeric quantity
value of e raised to the power of the argument
natural logarithm of a numeric quantity
base 10 logarithm of a numeric quantity
sign of a numeric quantity
square root of a numeric quantity

inverse cosine of a numeric quantity
inverse sine of a numeric quantity
inverse tangent of a numeric quantity
inverse tangent of a ratio
cosine of an angle expressed in radians
sine of an angle expressed in radians
tangent of an angle expressed in radians

next higher integer
convert a numeric value to an ASCII character
next lower integer
round a real value to the nearest integer
truncate a real value to an integer

format a string
substring from left of a string
substring from middle of a string
substring from right of a string
search a string for a substring
length of a string
extract a token from a string
convert a string to upper case

first element in a list
last element in a list
next element in a list
ordinal number of element in a list
previous element in a list

7-55

ICL function

Built-in Functions (continued),

cateaory function

general cond
query
type

purpose

tests a status condition
query system information
information about an expression or variable

The following sections describe each function in detail. Functions are listed alphabetically

7-56

abs

ICL function

Pal’pose:

Format:

Argument:

Return value:

Return type:

Examples:

Compute the absolute value of a numeric quantity.

abs(x)

any numeric quantity

The absolute value of the argument is returned.

The type of the return value is the same as the type of the argument. If the
argument is an integer, the result is an integer. If the argument is a real,
the result is a real.

abs(x) returns x if x is greater than or equal to zero
returns -x if x is less than zero

7-57

ICL function

acos

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Computes the inverse cosine of a numeric quantity.

aCOS(X)

any numeric quantity in the range -1 to 1

The return value is the angle whose cosine is equal to the argument,
expressed in radians.

real

acos(O.6) retums 1.0472 radians (60 degrees)

asin, atan, atan2, cos

7-58

asin

ICL function

Puq3osc:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Compute the inverse sine of a numeric quantity.

asin(x)

any numeric quantity in the range -1 to 1

The return value is the angle whose sine is equal to the argument,
expressed in radians.

real

asin(O.5) retums 0.523599 radians (30 degrees)

acos, atan, atan2, sin

7-59

ICL function

atan

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Compute the inverse tangent of a numeric quantity.

atan(x)

any numeric quantity

The return value is the angle whose tangent is equal to the argument,
expressed in radians.

real

atan(lO0) returns 1.5608 radians (89.5 degrees)

acos, asin, atan2, tan

7-60

atan2

ICL function

Purpose:

Form:

Arguments:

Return value:

Return type:

Examples:

Note:

See Also:

Compute the inverse tangent of a ratio. This is similar to atan(x/y), except
that it preserves the individual signs of the arguments. This allows atan2 to
return values over a full 2~ radians.

atan2(x, y)

any numeric quantities

The return value is the angle whose tangent is equal to the ratio of the
arguments, expressed in radians.

real

atan2(100, t00) returns 0.785398 radians (45 degrees)
atan2(-1, -1) returns -2.35619 radians (-135 degrees)

atan2(0, 0) is undefined.

acos, asin, atan, tan

7-61

ICL function

ceil

Purpose:

Form:

Argument:

Return value:

Returns the ceiling of a numeric quantity.

ceil(x)

any numeric quantity

the smallest integer >= x

Return type:

Examples:

See Also:

integer

ceil(1.1) retums
ceil(-1 t.3) returns -11

floor, round, trunc

7-62

chr

ICL function

Pulrpose;

Form:

Argument:

Return value:

Return type:

Examples

Converts a numeric value to a character.

chr(x)

numeric value in the range 1 to 255

string containing the character with value equal to the argument

string

#H4t returns the character ’A’

7-63

ICL function

cond

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Tests a status condition after a wait instruction. When a wait for any status
statement is executed, this function can be called to determine which en-
abled status conditions caused the wait to terminate.

cond(x)

status condition string (see status statement) or ’TIMEOUT’.

Zero is returned if the given condition was not set. One is returned if the
condition was set.

integer

cond(’PROCESSING DONE 1’)
cond(’STORE DONE’)
cond(’TIMEOUT’)

status and wait statements

7-64

ICL function

Purpose:

Form:

Ar~mlent:

Return value:

Return type:

Examples:

See Also:

Computes the cosine of an angle expressed in radians.

COS(X)

a numeric quantity representing an angle expressed in radians

the cosine of the angle

real

x=60
cos(x’pill80) returns 0.5

acos, sin, tan

7-65

ICL function

exp

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

See Also:

Computes the value of e raised to the power of the argument.

exp(x)

any numeric quantity

eAx

real

t=3.5
exp(-2 * t) returns 0.000911882

e is the base of the natural logarithm, 2.718281828...

log, IoglO

7..66

first

ICL function

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns the first element in a list.

first(list_name)

the name of a list previously defined in the program

the first element of the list

element of the indicated list

list colors is (red orange yellow green blue violet)
first(colors) returns red

last, next, prey, list statement

7=67

ICL function

Purpose;

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns the floor of a numeric quantity.

floor(x)

any numeric quantity

the largest integer <= x

integer

floor(l.l) returns 1
floor(-11.3) returns -12

ceil, round, trunc

7-68

ICL function

format

Purpose:

Form:

Arguments:

Format a string. This function is similar to the sprintf function in the
language C.

format(control, argl, arg2 argN)

control This argument is a control string which specifies how the
remaining arguments are to be interpreted. The control string
consists of types of objects: normal characters and conversion
specifications. Normal characters are copied into the resulting
string. Conversion specifications indicate how the remaining
arguments are to be formatted.

A conversion specification begins with a percent (%) and ends
with a character which indicates the type of conversion. The
conversion characters are:

character meaning

C The corresponding argument is treated as an integer.
Its value is used to produce an ASCII character. For
example, if the value is 65, the letter "A" results.

d The corresponding argument is treated as an integer.
Its value is converted as a signed decimal number.

The corresponding argument is treated as a real.
The number is converted in scientific notation, as
in 1.234e-10.

The corresponding argument is treated as a real.
The number is converted without an exponent, as
in -123.456.

g The corresponding argument is treated as a real. The
number is converted using either the "e" or "f" form
above, depending on the value, in order to reduce the
number of characters in the result.

The corresponding argument is treated as an integer.
Its value is converted as an unsigned octal number.

7-69

ICL function

format (continued)

character meaning

The corresponding argument is treated as a string.
The text of the argument is copied into the result.

The corresponding argument is treated as an integer.
Its value is converted as an unsigned decimal number.

The corresponding argument is treated as an integer.
Its value is converted as an unsigned hexadecimal
number. The digits 10 to 15 are represented by the
letters "a" to "f".

X The corresponding argument is treated as an integer.
Its value is converted as an unsigned hexadecimal
number. The digits 10 to 15 are represented by the
letters "A" to "F".

You can further control the formatting by including a control
number between the % and the conversion character.

The integer part of the control number indicates the minimum
number of characters to be used to print the argument. ’%6d’
means that the argument is to be printed as a 6 digit integer. If the
value doesn’t require 6 digits, it is preceded by enough spaces to
make 6 characters.

If the control number begins with zero, the value is preceded by
zeros rather than spaces in order to fill the required number of
characters. If ’%06d’ were used to format the value 123, the result
would be 000123.

If the control number is negative, the value is left justified in the
number of characters specified. If ’%-6d’ were used to format the
value 123, the result would be ’123 ’.

When formatting real arguments, you may specify the number of
digits to the right of the decimal point by including a fractional part
in the control number. For example, ’%6.3f means that a real
argument is to be formatted using a total of 6 characters, with three

7-70

format (continued)

ICL function

Return value:

Return type:

Examples:

Note:

argl ...

to the right of the decimal point. Using this control with the
value 1.23 would produce ’ 1.230’.

additional arguments as required. These arguments must match
their corresponding entries in the control string.

the formatted stdng

string

format(’value = %4.2r, 3.1) returns ’value = 3.10’

At most 10 arguments, including the control string, can be used.

7-71

ICL function

inp

Purpose:

Form:

Arguments:

Return value:

Return type:

Examples:

See Also:

Inputs value from an I/0 port.

inp(addr, size)

addr - a numeric quantity specifying the I/0 port address
size - the size of the I/0 port in bytes (1,2, or 4)

the value read from the I/0 port.

integer

inp(Ox21,1) retums the current interrupt mask value

outp

7-72

last

ICL function

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns the last element in a list.

last(list_name)

the name of a list previously defined in the program

the last element of the list

element of the indicated list

list colors is (red orange yellow green blue violet)
last(colors) retums violet

first, next, prev, list statement

7-73

ICL function

left

Purpose:

Form:

Arguments:

Return value:

Return type:

Examples:

See Also:

Returns a substdng containing the leftmost n characters of a string.

left(x, n)

x m a string
n -- a numeric quantity

the leftmost n characters of the string x

string

leff(’Thi$ is a string’, 4) returns ’This’

mid, nght, search, token

7-74

log

ICL function

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns the natural logarithm of a value.

/og(x)

a numeric quantity greater than zero

the natural logarithm of the argument

real

log(l) returns 0
log(10) retums 2.30259

exp, IoglO

7-75

ICL function

ioglO

Purpose;

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns the base 10 logarithm of a value.

loglO(x)

a numeric quantity greater than zero

the base 10 logarithm of the argument

real

Iogt0(t) retums 0
Iog10(10) returns 1

exp, log

7-76

mid

ICL function

Pmlnose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Returns a substring of a string.

mid(x, f, n)

X
f

a string
a numeric quantity indicating the position of the first character of the
substring. Zero indicates the first character of the string.
a numeric quantity indicating the number of characters in the substring.

the substring of the string x

string

mid(’This is a string’, 5, 2) retums ’is’

left, right, search, token

7-77

ICL function

next

Purl~sc:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

See Also:

Returns the next element in a list.

next(x)

an element of any list defined in the program

the next element of the list

same as the argument

list colors is (red orange yellow green blue violet)
c = first(colors)
next(c) retums orange

If the argument is the last element of its list, the first element is returned.

The next function needs to know the list to which the argument belongs.
Usually, it is clear. In the above example, the variable "c" belongs to the
list "colors", because it was set to first (colors).

If an element appears in more than one list, ambiguity may result. In the
following example, the values 0, 10, and 20 are common to two lists.

list multiples_of_five is (0 5 10 15 20)
list multiples_of_two is (0 2 4 6 8 10 12 14 16 18 20)
a = first(multiples_of_five)
b=0
c=2
x = next(a)
y = next(b)
z = next(c)

The first two assignments set the variables "a" and "b" to the value 0.
Since "a" is cleady from the list "multiplies of five", the value of "x" must
be 5. But "b" could belong to either list, so the value of "y" is not well de-
fined. The third assignment sets %" to the value 2. Since only the list "mule
tiples._of._two" contains that value, "z" will be set to 4.

first, last, prev, list statement

7-78

ord

ICL function

Purpose:

Form:

Arguments:

Return value:

Return type:

Examples:

Notes:

See Also:

Returns the ordinal number of a list element in a list.

ord(1, x)

list_name the name of any list defined in the program
x any element of the list

The number of the element in the list. The first element of a list gives zero.

integer

list colors is (red orange yellow green blue violet)
ord (colors, green) retums 3

list dir is (north east south west)
array real data [ord(dir, north):ord(dir, west)]

This example uses the ord function to define the range of subscripts for an
array. In this case, the array contains one element for each entry in the list
dir.

If the element does not belong to the list, the program is terminated with
an error message.

In contrast to the next and prevfunctions, ord requires that the name of
the list be specified. This avoids ambiguities when the list element belongs
to more than one list.

array and list statements
built-in functions first, last, next, and prev

7-79

ICL function

outp

Purpose:

Form:

Arguments:

Return Value:

Examples:

See Also:

Outputs a value to an I/0 port.

outp(addr, value, size)

addr- a numeric quantity specifying the I/0 port address
value - a numeric quantity to be written to the I/0 port
size - the size of the I/0 port in bytes (1,2, or4)

This function does not return a value. It is used as a statement rather than
inside an expression.

outp(Ox21, Oxff, t) sets the interrupt mask to all ones

inp

7-80

ICL function

prev

Pur~se:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

See Also:

Returns the previous element in a list.

prev(x)

an element of any list defined in the program

the previous element of the list

same as the argument

list colors is (red orange yellow green blue violet)
c = last(colors)
prev(c) retums blue

If the argument is the first element of its list, the last element is returned.

The prevfunction needs to know the list to which the argument belongs.
Usually, it is clear. In the above example, the variable "c" belongs to the
list "colors", because it was set to last(colors).

If an element appears in more than one list, ambiguity may result. In the
following example, the values 0, 10, and 20 are common to two lists.

list multiples_of_five is (0 5 10 15 20)
list multiples_of_two is (0 2 4 6 8 10 12 14 16 18 20)
a = last(multiples of five)
b =20
c=2
x = prev(a)
y = prev(b)
z = prev(c)

The first two assignments set the variables "a" and "b" to the value 20.
Since "a" is clearly from the list "multiplies of five", the value of "x" must
be 15. But "b" could belong to either list, so the value of "y" is not well de-
fined. The third assignment sets "c" to the value 2. Since only the list "mul-
tiples_of_two" contains that value, "z" will be set to 0.

last, next, prev, list statement

7-81

ICL function

query

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Notes:

See Also:

Query system information. This function executes a normal GPIB query
and retums the result as a string.

query(x)

GPIB query string

result of the query

string

query(’GRID?’) returns ’GRID DUAL’ if two grids are displayed

The following example prints trace definitions to the host.

list traces is (T1 T2 T3 T4 T5 T6 1"7 T8)
for t in traces

println host query(tl’:DEF?’)
endloop

The query function asks the system not to return a heading in the
resulting string.

The query function should only be used when the result is a string. Do not
use it when binary data is returned. For example, query (’WF?’) is not
allowed.

left, mid, fight, search, token, type

7-82

right

ICL function

1)uTposc"

Form:

Arguments:

Return value:

Return type:

Examples:

See Also:

Returns a substring containing the rightmost n characters of a string.

right(x, n)

x- a string
n m a numeric quantity

the rightmost n characters of the string x

string

right(’This is a string’, 6) returns ’string’

left, mid, search, token, type

7-83

ICL function

round

Purpos¢:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Rounds a real value to the nearest integer.

round(x)

a numeric quantity

the integer nearest to x

integer

round(1.7) returns 2
round(-100.1) returns -100

ceil, floor, trunc

7.84

search

ICL function

Purpose:

Form:

Arguments:

Return value:

Return type:

Examples:

Searches a string for a substring.

search(x, s)

x m the string to be searched
s m the substring to be searched for

The position in string x of the first character of the substring s. The first
position is zero. If the substring is not found, -1 is returned.

integer

search(’This is a string’, ’is’) returns 2
search(’This is a string’, ’IS’) returns -1

7-85

ICL function

sign

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

Return the sign of a numedc quantity.

sign(x)

any numeric value

Return 1 if the argument is >0, 0 if the argument is = 0, and -1 if the
argument is < 0.

integer

sign(x)

The sign function is not related to the sin function.

7-86

sin

ICL function

Pul-pOSe:

Form:

Argument:

Return value:

Retum type:

Examples:

See Also:

Computes the sine of an angle expressed in radians.

sin(x)

a numeric quantity representing an angle expressed in radians

the sine of the angle

real

x:30
sin(x*pi/t80) returns 0.5

asin, cos, tan

7-87

ICL function

sqrt

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Retums the square root of a numeric quantity.

sqrt(x)

a non-negative numeric value

the square root of the argument

real

sqrt(2) returns 1.41421

7-88

strlen

ICL function

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Returns the length of a string.

strlen(x)

a string

the number of characters in the string argument

integer

strlen(’This is a string’) retums

7-89

ICL function

tan

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

See Also:

Computes the tangent of an angle expressed in radians.

tan(x)

a numeric quantity representing an angle expressed in radians

the tangent of the angle

real

x=45
tan(x’pill80) returns 1

atan, cos, sin

7-90

ICL function

token

Purpose:

Form"

Arguments:

Return value:

Return type:

Examples:

Returns a token from a string. This function is useful in breaking a string
down into its components. Often, you won’t know exactly where each part
of the string begins. This makes it difficult to use the left, mid, and right
string functions. Token allows you to extract a substring from a string sim-
ply by knowing how many items precede it.

There are three types of tokens: identifiers, numbers, and everything else.
Identifiers follow the same rules as variable names. Numbers may be inte-
ger or real, and may include a leading "+" or "-" sign, provided that there is
no whitespace between the sign and the number. Any character which
does not begin an identifier or a number is considered to be a token by it-
self, with the exception that whitespace characters are ignored.

token(x, n)

x m the string to examine
n m the number of the token to return, beginning with 1

The token substring, or ’NO_TOKEN’ if the n-th token was not present.
This will happen if n is less than or equal to zero, or greater than the num-
ber of the last token in the string.

string

for n = 1 to 100
t ffi token(’example <= 1 ; -1.23e5.’, n)
print display n II t
if t ffi ’NO_TOKEN’
break

endif
endloop

7-91

ICL function

token (continued)

See Also:

The preceding example prints the following tokens:

1 example
2 <
3 =
4 1
5 ;
6 -1.23e5
7
8 NO_TOKEN

When in doubt about the number of a token in a string, write a loop similar
to the above example to print the tokens in it.

left, mid, right, search, type

7-92

trunc

ICL function

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

See Also:

Truncates a real value to an integer.

trunc(x)

a numeric quantity

The argument is truncated toward zero. If x is greater than zero, the result
is the same as floor(x). If x is less than zero, the result is the same
ceil(x).

integer

trunc(t.7) returns 1
trunc(-100.1) returns -100

In most other languages, this operation happens automatically whenever a
real number is assigned to an integer.

ceil, floor, round

7-93

type

Purpose:

Form:

Argument:

Return value:

Return type:

Examples:

Note:

See Also:

Returns type information about an expression.

type(x)

an expression (typically a variable name)

0 if the expression is an integer
1 if the expression is a real
2 if the expression is an undefined variable
3 all other cases (string or list constant)

integer

type(variable_name)

When a program is first executed, all variables are marked as undefined.
The type function can be used to determine whether a value has ever
been assigned to a variable, and if so, what type it is.

Since elements in a list need not all be of the same type, the type function
can be used to determine the type of a particular list entry.

list statement

7-94

ICL function

upper

Purpose:

ForllE

Argument:

Return value:

Return type:

Examples:

Note:

Converts a string to upper case. Also, leading and trailing whitespace is re-
moved, and each sequence of multiple whitespace characters is converted
to a single space.

upper(x)

a string quantity

A string containing a "standard" version of the argument.

string

upper(’ This is a string ’) returns ’THIS IS A STRING’

This function is used internally in approximate comparisons of strings.

7-95

Section 8: GPIB Pro rammin Exam les

Following is a programming example in BASIC illustrating how to control GPIB input and out-
put to the 7200. The program will run on an IBM PC with DOS 3.2 or higher and a National
Instrument’s GPIB-PC board installed. The file =bib.m" is the BASIC language interface file
contained in the distribution diskette along with the GPIB-PC board. This binary file must be
present in the same directory as the programming example in order to properly run the pro-
gram. The program illustrates the use of status bytes in synchronizing remote control of the
7200. The program acquires waveforms and tests them against user-entered limits. The user
also specifies whether acquired waveforms should meet or exceed these limits. Any wave-
form which meets these requirements are read over the GPIB bus and saved on disk in the
current directory in files labeled =BABYSIT.000","BABYSIT.001 ", and so on up to
=BABYSIT.999". This allows unattended monitoring of signals where only the waveforms of
interest are saved. These waveforms may then be written back into the 7200 for later analy-
sis. A brief line by line explanation follows:

LINE# DESCRIPTION

60 -110

120-240

250-740

Initializes the GPIB handler. Lines 90- 110 are taken from the file DECL.BAS.
If these lines differ from your version, replace with your version of DECL.BAS.
Initialize the user limits, then loop forever acquiring waveforms, checking the
pulse parameters against the user limits, and reading any waveforms satisfying
the user limits which then get stored to disk.

Initialization Procedure:

2020-2120: Initialize GPIB devices by sending Interface Clear,
remote enable, and disabled timeout. Lastly, send =LOCAL" to
allow simultaneous front-panel and remote operation for
flexibility.

300-310: Set the COMM_HEADER to short for faster transfers. Set the
COMM_FORMAT to #9 definite length block with 16-bit data
words in binary encoding for fast waveform transfers and easy
road-back to the 7200. Set trigger mode to SINGLE.
Turn on Trace 1.

320-370: Tum off Trace 2 thru Trace 8.

8-1

750-800:

810-850:

860-1100:

1110-1240:

1250-1600:

380-510: Input the user-specified limits to monitor, set the default
filename to =BABYSIT.000".

520-550: Define the user-specified Trace Equation for Trace 1.

560-700: Initialize internal variables based on user input.

710-740: Clear all status registers, enable the Waveform Processing
Done mask for Trace 1, enable the Data Processing Done mask
for Waveform Processing, and enable bit 1 of the Status Byte
register. Thus, a service request (RQS) is only generated when
processing is done for Trace 1.

Outside Procedure: If the Pulse Parameter is outside the user-specified limits,
call the reed/save procedure.

Inside Procedure: If the Pulse Parameter is inside the user-specified limits, call
the read/save procedure.

Acquire Procedure: Issues a trigger, acquires a waveform, and finds the user-
specified pulse parameter.

860-890: Clear all status bytes and issue a trigger.

900-950: Poll for RQS for 20 seconds. If no RQS in 20 seconds, display
a h’igger timeout error and terminate. (TIMER returns the
elapsed number of seconds).

960-990: If Waveform Processing complete, then query the Pulse
Parameter else display error message: wrong bit set.

1000-1100: Read the Pulse Parameter and extract the 3rd token which is
the value. If the value is =-", the pulse parameter is invaUd else
retum the value. (Sample response is
T1 :PAVA FREQ, 5.135E6 Hz, AV If parameter is valid
and T1 :PAVA FREQ, - - -,IV if the parameter is invalid).

Reed/Save Procedure: Sound the 7200 bell to alert the user that a waveform
has exceeded the limits and query the waveform for Trace 1. Read the
waveform into the disk file and Increment the file extension. Check for errors,
then print the number of bytes transferred.

Error Handlers: These subroutines handle any errors which may have occurred
and set STATUS=I which terminates the program. For a description of the
variables IBSTA% and IBERR%, refer to the GPIB-PC User Manual under
Status Word and Error Codes, respectively.

8-2

1610-2010:

2130:

Token Parsing Subroutine: Parses a remote response string from the 7200 into
individual tokens. The caller initializes TOKEN to the number of the token to
be parsed, TOKENMSG$ is set to the response string, and TOKENS is the
parsed token. For example, the query "1"1 :PAVA? FREQ" may return the
response "1"1 :PAVA FREQ,20E+6 Hz,AV" where

TOKEN 1 = T1 :PAVA (header - Parameter value for Trace 1)
TOKEN 2 = FREQ (keyword - Frequency)
TOKEN 3 = 20E+6 (value - 20MHz)
TOKEN 4 = Hz (base units - Hertz)
TOKEN 5 = AV (state - Averaged)

1610-1690: Parse from the first token to the requested token, return the
requested token in TOKENS

1700-1820: Step through the string character by character looking for
either a comma,space,single quote, or double quote. Skip
quoted strings and retum tokens delimited by commas or
spaces

1830-1900: Skip any leading or trailing spaces and return the token in
TOKENS

1910-1950: Skip single-quoted strings

1960-2010: Skip double-quoted strings

Program END

Program Listing

10REM
20REM
30REM
40REM
50REM
60REM
70REM
80REM

This program is used to acquire waveforms and read
them over the GPIB to be saved on diskwhen a
selected pulse parameter is between or outside of
two user-specified values.

Load National Instrument’s GPIB handler
**NOTE: You must have the file "bib.m" in your current directory
These lines merged from "DECL.BAS"

90 CLEAR ,600001 : IBINITI=600001 : IBINIT2=IBINIT1 +3 : BLOAD "b Ib .m" ,IBINIT1
100 CALl IBINIT1 (IBFIND,IBTRG,IBCLR,IBPCT,IBSIC,IBLOC,IBPPC,IBBNA,IBONL,IBRSC,IB
SRE,IBRSV,IBPAD,IBSAD,I BIST, IBDMA, IBEOS,IBTMO,IBEOT,IBRDF,IBWRTF,IBTRAP)
110 CALL IBINIT2(IBGTS,IBGAC,IBWAIT, IBPOKE,IBWRT,IBWRTA,IBCMD,IBCMDA,IBRD,IBRDA,
~BST~P~~BRPP’~BRSP’~BD~AG~~B~TRC’~BRD~~~BwRT~~~BRD~A’~BwRT~A~~BSTA%~~BERR%~~BCNT
%)
120 REM

8-3

130 GOSUB 250
140 REM

150 REM MAINLOOP
150 REM
170 STATUS--0
180 GOSUB 86O
190 IF STATUS=I THEN GOTO 2130
200 IF STATUS=2 THEN PRINT PULSES+" Parameter Is INVALID’
210 IF STATUS=0 THEN IF WHEN=I THEN GOSUB 750 ELSE GOSUB 810
220 GOTO 150
230 REM
24O REM
250 REM INIT PROCEDURE
250 REM
270 INPUT "ENTER GPIB ADDRESS OF THE 7200 ", ADDR%
280 PRINT =INITIALIZING NATIONAL INSTRUMENT’S GPIB CARD*
290 GOSUB 2020
300 MSG$=’CHDR SHORT;CFMT DEFg,WORD,BIN;TRMD SINGLE;TI:TRACE ON"
310 CALL IBWRT(DSO%,MSG$)
320 FOR T---2 TO 8
330 T$=STRINGS(1,T+48)
340 MSG$=’T’+T$+’:TRACE OFF"
350 CALL IBWRT(DSO%, MSG$)
360 NEXT T
370 REM
380 INPUT =Channel to monitor (A1, A2, B1 or B2) ",CHAN$
390 INPUT "Parameter to monitor (1--frequency, 2=period, 3=peak-to-peak) ",PP
400 INPUT "Read waveform when parameter (l=outeide, 2=Inside) hl/Io limit ",WHEN
410 RANGES=’(0.00 to 1000.00)"
420 IF PP=I THEN UNITS$=’MHz"
430 IF PP--2 THEN UNITS$="uS =
440 IF PP--3 THEN UNITS$=’Volte"
450 PRINT "HIGH LIMIT "+RANGE$+UNITS$;
460 INPUT HIGH
470 PRINT "Low limit =+RANGE$+UNITS$;
480 INPUT LOW
490 FILEDIR$=’BABYSIT"
500 FILEXT=1000
510 REM
520 QUOTEl$--CHR$(39):QUOTE25=CHR$(34)
530 TRACE$=’T1 :DEF EQN,’+QUOTE2$+CHAN$+QUOTE2$+’,MAXPTS,10000"
540 CALL IBWRT(DSO%, TRACES)
550 REM
550 IF LOW < HIGH THEN GOTO 590
570 LOW = .9*HIGH
550 PRINT =High =";HIGH;" Low =’;LOW
590 REM
600 IF PP=I THEN MULT=10000001
610 IF PP=2 THEN MULT=.000001
620 IF PP---3 THEN MULT=I
630 REM

8-4

640 IF PP=I THEN PULSE$="FREQ"
650 IF PP---2THEN PULSE$="PER"
650 IF PP=3 THEN PULSE$=’PKPK’
670 REM
680 MAX = HIGH*MULT
690 MIN = LOW*MULT
700 REM
710 MSG$=’*CLS;WPE 1 ;DPE 2;*SRE 2’
720 CALL IBWRT(DSO%, MSG$)
730 RETURN
740 REM
750 REM OUTSIDE PROCEDURE
760 REM
770 IF VALUE < MIN THEN GOSUB 1110
780 IF VALUE > MAX THEN GOSUB 1110
790 RETURN
800 REM
810 REM INSIDE PROCEDURE
820 REM
830 IF VALUE >= MIN THEN IF VALUE <= MAX THEN GOSUB 1110
840 RETURN
850 REM
850 REM ACQUIRE PROCEDURE
870 REM
880 MSG$="*CLS;*TRG’
890 CALL IBWRT(DSO%, MSG$)
900 START=TIMER
910 REM Walt Loop
920 CALL IBRSP(DSO%, SPR%)
930 IF SPR% AND &H40 THEN GOTO 960
940 IF TIMER-START > 20 GOTO 1320
950 GOTO 910
960 REM Waveform Data Ready
970 IF NOT SPR% AND 2 THEN GOTO 1270
980 MSG$="rl:PAVA? =+PULSES
990 CALL IBWRT(DSO%, MSG$)
1000 RESULTS=SPACES(100)
1010 CALL IBRD(DSO%,RESULT$)
1020 TOKENMSG$=RESULT$:TOKEN--.3:GOSUB 1630
1030 IF LEFT$(’FOKEN$,I)<>"-" THEN GOTO 1060
1040 STATUS--2
1050 RETURN
1060 REM Valid Data
1070 VALUE=VAL(TOKEN$)
1080 RETURN
1090 REM
1100 REM
1110 REM *** * READ/SAVE WAVEFORM PROCEDURE
1120 REM
1130 MSG$="BUZZ PULSE;T1 :WF?"
1140 CALL IBWRT(DSO%, MSG$)
1150 FLNAME$=FILEDIR$+’."+RIGHT$(STR$(FILEXT),3)
1160 CALL IBRDF(DSO%,FLNAME$)

8-5

1170 FILEXT=FILEXT+I
1180 REM
1190 REM Store Operation Complete: Check For Errors
1200 IF IBSTA% AND &HS000 THEN GOTO 1420
1210 IF IBSTA% AND &H4000 THEN GOTO 1370
1220 PRINT IBCNT%;" BYTES TRANSFERED TO FILE =;R.NAMES
1230 RETURN
1240 REM
1250 REM *********** ERROR HANDLERS
1260 REM
1270 REM Error Reading SRQ Register (SPR%)
1280 PRINT "SRQ = =;SPR%;" BUT SHOULD BE 66"
1290 STATUS=I
1300 RETURN
1310 REM
1320 REM Tlmeout Error
1330 PRINT "T’IMEOUT WAITING FOR TRIGGER"
1340 STATUS=I
1350 RETURN
1350 REM
1370 REM Tlmeout Error
1380 PRINT "I’IMEOUT WRITING WAVEFORM TO DISK FILE"
1390 STATUS=I
1400 RETURN
1410 REM
1420 REM GPIB Error Condition: Interpret IBERR%
1430 REM
1440 IF IBERR% = 0 THEN PRINT =DOS ERROR"
1450 IF IBERR% = 1 THEN PRINT *FUNCTION REQUIRES GPIB-PC TO BE CIC=
1460 IF IBERR% = 2 THEN PRINT *NO LISTENER ON WRITE FUNCTION"
1470 IF IBERR% = 3 THEN PRINT *GPIB-PC NOT ADDRESSED CORRECTLY"
1450 IF IBERR% = 4 THEN PRINT =INVALID ARGUMENT TO FUNCTION CALL"
1490 IF IBERR% = 5 THEN PRINT "GPIB-PC NOT SYSTEM CONTROLLER AS REQUIRED"
1500 IF IBERR% = 6 THEN PRINT *1/O OPERATION ABORTED"
1510 IF IBERR% = 7 THEN PRINT =NON-EXISTENT GPIB-PC BOARD"
1520 IF IBERR% =, 10 THEN PRINT *1/O STARTED BEFORE PREVIOUS OPERATION COMPLETED"
1530 IF IBERR% = 11 THEN PRINT "NO CAPABILITY FOR OPERATION"
1540 IF IBERR% = 12 THEN PRINT *FILE SYSTEM ERROR"
1550 IF IBERR% = 14THEN PRINT *COMMAND ERROR DURING DEVICE CALL"
1560 IF IBERR% = 15 THEN PRINT *SERIAL POLL STATUS BYTE LOST"
1570 IF IBERR% = 16 THEN PRINT *SRQ STUCK IN ON POSITION"
1580 STATUS=I
1590 RETURN
1600 REM
1610 REM "’********* TOKEN PARSING PROCEDURE ************
1520 REM
1830 REM Token Parser:. remove TOKEN token from TOKENMSG$, put In TOKENS
1540 TOKINDEX=I
1650 TOKSIZE=LEN(TOKENMSG$)
1500 FOR TOKCOUNT=0 TO TOKEN-1
1670 IF TOKINDEX <= TOKSIZE THEN GOSUB 1700
1680 NEXT TOKCOUNT
1680 RETURN

8-6

1700 REM Retum next token in TOKENS
1710 TOKLENGTH=0
1720 TOKS=MID$(TOKENMSG$,TOKINDEX,1)
1730 IF TOK$="," THEN GOTO 1830
1740 IFTOK$=""THEN GOTO 1830
1750 IF TOK$--QUOTEI$THEN GOSUS 1910
1760 IF TOK$--QUOTE2$THEN GOSUB 1960
1770 TOKLENGTH=TOKLENGTH+I
1780 TOKINDEX=TOKiNDEX+I
1790 IF TOKINDEX <= TOKSIZE GOTO 1720
1800 IF TOKLENGTH--0 THEN TOKENS="
1810 IF TOKLENGTH>0 THEN TOKEN$=RIGHT$(LEFT$(TOKENMSG$,TOKINDEX-1),TOKLENGTH)
1820 RETURN
1830 REM Token Found
1840 IFTOKLENGTH=0 THEN TOKENS=’"
1850 IF TOKLENGTH>0 THEN TOKENS=RIGHT$(LEFT$(TOKENMSG$,TOKINDEX-1),TOKLENGTH)
1860 TOKINDEX=TOKINDEX+I
1870 REM Skip leading/trailing white space
1880 IF TOKINDEX > TOKSIZE THEN RETURN
1890 IF MID$(TOKENMSG$,TOKINDEX,1)<>" "THEN RETURN
1900 TOKINDEX=TOKINDEX+I:GOTO 1870
1910 REM Skip to second closing single quote (’)
1920 IF TOKINDEX = TOKSIZE THEN RETURN
1930 TOKLENGTH=TOKLENGTH+I
1940 TOKINDEX=TOKINDEX+I
1950 IF TOK$--QUOTEI$ THEN RETURN ELSE GOTO 1910
1960 REM Skip to second closing double quote (~)
1970 IF TOKINDEX = TOKSIZE THEN RETURN
1980 TOKLENGTH=TOKLENGTH+ 1
1990 TOKINDEX=TOKINDEX+I
2000 TOK$=MID$(TOKENMSG$,TOKINDEX,1)
2010 IF TOK$--QUOTE2$ THEN RETURN ELSE GOTO 1960
2020 REM Subroutine : Initialize GPIB
20~0 REM Open devices & return unit descriptors
2040 DEVICE$=’DEV’+CHR$(&H30+ADDR%)
2050 CALL IBFIND(DEVICE$,DSO%) ’ Assign unit descriptor
2060 CNAME$=’GPIB0":CALL IBFIND(CNAME$,BD%)
2070 CALL IBSIC(BD%) ’ Send interface clear
2080 V%=1 :CALL IBSRE(BD%,V%) ’ Send remote enable
2090 V%=0:CALL IBTMO(DSO%,V%) ’ Disable tJmeout
2100 MSG$=’LOC"
2110 CALL IBWRT(DSO%,MSG$) ’Enable local control
2120 RETURN
2130 END

APPENDIX A: SYSTEM MESSAGES

APPENDIX A-1

OPERATOR WARNINGS

OPERATOR WARNINGS

An operator warning occurs when a command contains an illegal request but is automatically
corrected by the 7200 (A). The command is completed using the correction. Some warnings
will not cause any action to be taken but will simply display a warning message in the sys-
tem message area.

cooE MESSAGE DESCRIPTION

i~ ii11 i? i;I !!zlii;iiiiii=WARNING: DATA NOT ON A STEP" Remote data was not a multiple of the

’i i!i!ii! step size, it was rounded to the nearest
multiple.

:i;i!i:2:~?:iii!iiiiii!i Remote data was out of bounds; it was
i!!-

=WARNING: DATA OUT OF RANGE"
clipped to the nearest boundary.

?!i~!!31!!i!iiii~iiiiii!ii!!i!!il=WAITING FOR HARDCOPY TO COMPLETE"
:ii;i:~iii41ii~iiiii~iii;!ii~i;ii::=NO TRACES ARE ACTIVE" Attempt to do something to a trace when
ii:iiiii~i!iiii~!iiii:!~i!i!ii!i:i!i!ii! none are active

’ ii!!i~iiSii!~iiiiiiiiiiiiiiii~i~i:=NO SETUP SCREEN FOR %s" No menu available for this key (where %s
..... i~ !i! i!i!i i!i!I ii~ilil , is name of key)

ii6 ~i;!!i!i!iii!ii~i!¸ =No help for key~ No help available for this key

1 7:’ :i "OUTPUTTO FLOPPY ABORTED"
i =OUTPUT TO FLOPPY ABORTED:code %d"
¯ : :: ¯ "DISK IS FULL"

"PLUGIN %c TIMEBASE TOO LOW FOR Timebase too low for real time
......REALTIME"

reserved A channel must be selected at all times
"PLUGIN %c - TIMEBASE TOO LOW FOR Timebase too low for sequence mode

....i SEQUENCE"
’11 RIS not allowed during sequence mode

~ 12i i~!ii =PLUGIN %c TIMEBASE TOO HIGH FOR RIS" Timebase too high for RIS

’13 reserved Mem size to low for realtime sequence
mode.

"VERTICAL UNIT TOO LONG* trace units to long too be displayed

i :iii!¸ i ? fill(¸¸ "ILLEGAL VERTICAL UNIT"
=HORIZONTAL UNIT TOO LONG"

ii~i=/i ¸! iii I = =H t PGAL HORIZONTAL UNIT"

!s "SEQ TRACE CANNOT BE RE-POSITIONED" cannot change horizontal position of
unexpanded seq. wfm

APPENDIX A-2

OPERATOR WARNINGS

"WILL ABORT STORE AFTER FINISH CURRENT error storing or recalling to the disk
¯ ’ TRACE"

, , =NO TRACES TO BE STORED"
"UNABLE TO RECALL: INVALID TEMPLATE

.... FILE"
=NO RECALL,TEMS SPEC,F,ED"

....... ::=CANNOT WRITE TO AUTO BUFFER FILE"
"NOT ENOUGH MEMORY TO RETRIEVE

, WAVEFORM"
,~, "%s IS NOT A VALID WAVEFORM FILE"

i¯~17 ili!¸;¸I~I~ =PLUGIN %c - AMPLITUDE TO LARGE" Autosetup - Amplitude to large
;,;1t8 ~¯;ili?i=Plugin %c - DC Offset too large to center signal" Autosetup - DC offset too large to center

trace
11!19 ii:i~!ill "Plugin %c - DC Offset too large to show signal" Autosetup - DC component too large to

show signal
=Plugin %c - DC Offset too large to center trace" Autosetup - DC component too large to

center trace
,:2i i~ =Plugin %c - Amplitude too large to show signal" Autosetup - Amplitude too large to show

signal
i r i

not used
~ii!;!ii2311~iiiii~!iii:inot used
24 ~:~ not used

"UNKNOWN FUNCTION %s" unknown equation source in trace
,:: ,~.,,.:~,.~, "UNKNOWN FUNCTION(CR’F) %d" equation
:26 "WARNING: NO PROGRAM DATA TO PRINT" No data to print/plot to hardcopy device

=CANNOT OPEN TEMPLATE FILE" Error initializing template translation table
: :

.i i¸ :: =CANNOT CLOSE TEMPLATE FILE"
¯

I .. :’!~, ̄ , ̧ ,¸¸i¸¯3 =CANNOT READ TEMPLATE FILE"
not used

1129, =DISPLAY OF WAVEFORMS DISABLED" waveform display disabled

’~ii3o "KEY NOT ACTIVE" key is not defined on current menu
;i;i;131::~:!i,=CANNOT EXECUTE FUNCTION WITH PLUG- plugins timebase and or triggers are

INS LOCKED" locked and control is not available since
its not in common between the plug-ins.

¯ 32 not used
not used
not used
=UNABLE TO COMPUTE CURSOR VALUE" cannot compute cursor value for

i!ii,~ !i i requested query

APPENDIX A-3

OPERATOR WARNINGS

‘CANNOT TURN TRACE OFF" trace cannot be turned on (in menu w/o
, "CANNOT TURN TRACE ON" traces or tre)

’: ~:i~ i!iiiii!! ill! ;!!!!:i~!i!iiii:’ =Incompatible traces"

, ~ir¸~ ~ i? i:ili~i~,=Incompatible sampling interval"
, ’.’.:, : :::. , =Unallowed record type"
’i iiill ~::!:; iiiilil.iiii!ii¸ "Non Overlapping time domains"

I ; I =Needs2 traces"
¯ ~ ’~:’. =lnvalidTraces"
:;;i~!!i37iTi;i!!iiiii~iHF Sync cannot be used with LINE trigger

=LIMIT REACHED" no more values selectable by turning
knob in same

.:!;:iii739~i;iiiii:i:~ii~!i!i.=MUST USE =Edit Text" SOFTKEY TO EDIT" user tried to edit text string without using
Li~iiii!:~i!’i!:ii~:ii!i!:!~iiiiii~iii~ilili~ =edit text" softkey

‘CAN NOT COMPUTE PARAMETERS ON can not calculate pulse parameters on
COMPLEX WAVEFORM" this waveform type

.................... ‘CAN NOT COMPUTE PARAMETERS ON

......... EXTREMA WAVEFORM"
i!i~!i!ii!i411~!:!iiiiiL~iii!iINR Status bytes not set NO or Slow triggers

=DOS FILENAMES CANNOT BEGIN WITH A filename for hardcopy begins with a
NUMBER" number
-PLOTABORTED" Plot or print aborted

,~i~i’ii~:!;.~:ii~i, -PRINTABORTED"
=NOT %s: ABORT IGNORED" Error trying to abort or during plotting or

.............. ’~/~s: SEND ’HCPY ABORT’ TO ABORT" printing (where %s is printing or plotting)
=In Local, Remote & Plot can’t be both on GPIB"

’ ;~! " =Only o/~ percent of free plot memory"
............................... "tIC:MEMORY ALLOC ERROR FOR GRAPHICS
....... LINE"
......... ,::~. "Plot truncated, reduce either density or size"
i~ ,,.. ~ ̄ =Only °/~1 percent of free plot memory"
; i~:ii!iiiiilU i::~:i:i!;:ii:=Dump Device Slow, Disconnected or Hang"

=WARNING: END IN (PMT) SET TO Value adapted: argument to command
adjusted to be valid

’: =WARNING: LINE LENGTH SET TO 40"
............. :, =WARNING: LINE LENGTH SETTO 1024"

¯ PLUGIN %c - HF SYNC ACTIVE CANNOT Cannot modify slope when hf sync is
. :. : MODIFY SLOPE" active

i:!47!i7~!ii~ "MISMATCH PROBE ATT CAN’T SELECT ALL Cannot lock vertical channel controls
CHANNELS" when Probe attenuations aren’t equal
"MISMATCH PROBE ATT SELECTING Mismatch probe attenuation selecting

, CHANNEL %s" channel
/!Li!i49 iiii~!:;:~;~:ii!~ "PLUGIN %c - NO or SLOW EXTERNAL CLOCK" External clock rate warning

,’ "KEY LOCKED OUT DURING AUTOSETUP" Key locked out during autosatup
: 5 ‘CANNOT CHANGE NUMBER OF GRIDS" cannot change number of grids

APPENDIX A-4

OPERATOR WARNINGS

i !52 "CAN’T MODIFY TRIGGER CONTROLS ON cannot modify trigger controls on slave if
SLAVE" plugins
=KEY LOCKED OUT DURING AUTOSETUP"

"CANNOT OPEN FILE ’%s’." problems reading/writing floppy
:, ; "CANNOT REMOVE OLD FILE ’%s’."

"KEY LOCKED OUT DURING AUTOSETUP" can’t change plugin controls or timebase
~.:. mode while

not used
=PLUGIN %c CAN’T MODIFY SOURCE IN "IV Can’t modify control while in tv trigger

"
TRIGGER"

i̧ ’i !i!::~"i: ’:ii!;
=PLUGIN %c CAN’T MODIFY SLOPE IN TV

iili:i i iiiiiii¸ iiii~!i.TRIGGER"
J i~ii!,~!!~i!i:!ii~:¸ . "PLUGIN %c CAN’T MODIFY COUPLING IN TV

~ TRIGGER"
I :: ::’ 1 "PLUGIN %c CAN’T MODIFY LEVEL IN TV

TRIGGER"
57 Querying CHANNEL ALL when both

channels do not have the same value
"FILE NOT PRESEN’r~ persistence file not found
"INTERNAL SYSTEM FAULT OCCURRED" system error had occured
=PARAMETERS NOT ALLOWED IN cannot turn on parameters in xy or

¯ ~. PERSISTENCE OR XY" persistence
~!!!i!!!i61~!!!i!iiiii!~!!iii~VARNING: INACCURATE TDC." TDC calibration error with external clock

"%c: NON-STANDARD EXTERNAL CLOCK Dynamic calibration error with external
........... FREQUENCY" clock

"NON-STANDARD REFERENCE CLOCK
" FREQUENCY"

"ARM COMMAND TIMEOUT" Wait command timeout
................... "WAIT COMMAND TIMEOU’I"

=OVERLOAD ON CH%d CAN’T SELECT ALL Overload is present, Can’t select channel
CHANNELS" all

65 "PLUGIN %c CAN’T MODIFY SLOPE IN Can’t modify slope during pattern trigger
PATTERN TRIGGER"
"PLUGIN %c CAN’T MODIFY HF SYNC IN Can’t modify hf sync during smart trigger

,~ :~ SMART TRIGGER"
67 "PLUGIN %c CAN’T MODIFY VAR. V/DIV WITH Variable volts/div can’t be used with 7291

: 7291" plugin
=PLUGIN %c CAN’T MODIFY VERT COUPLING Vertical input coupling can’t be used with
WITH 7291 °’ 7291 plugin
"POSITION LIMITED BY NON-DISPLAYED With common expand on, cannot
TRACE" horizontally reposition the traces any

more in current direction due to a trace
which is =locked" to the displayed group

, ; but is not being displayed.

APPENDIX A-5

OPERATOR WARNINGS

70 : =PLUGIN o/,¢ CAN’T MODIFY SLOPE IN LINE
TRIGGER"

.... ~PLUGIN %c CAN’T MODIFY COUPLING IN LINE
’ TRIGGER"

=PLUGIN %c CAN’T MODIFY HF SYNC IN LINE
TRIGGER"

¯ =PLUGIN %c CAN’T MODIFY LEVEL IN LINE
TRIGGER"

’i71 "PLUGIN %c REVISION DATA INVALID"
;ii!iiiiii72!i!~i!~iiiiiii "PLUG-IN %c INVALID REVISION"

73 "PLUGIN o/,¢ CAN’T MODIFY TRIG SOURCE
WITH 7291"

,,, !,, ,~ ~, ::! ,~:,!:~:!

174i :/ =SEGMENTS NOT LOCKED"

..... =

75~;~~: =PLUGIN %c RIS NOT VALID WITH 7291"
=PLUGIN %c INVALID MEM LENGTH FOR THIS

i I TIME PERDIV"

Line triggers control settings are not used

EEPROM checksum failed
Module revision is not valid
Trigger source must always be CH1 with
7291 plugin
When traces are set for common
horizontal expand & In sequence mode,
they must have the same number of
segments.

=GPIB ERROR: UNSUPPORTED CMD: %d"
=GPIB ERROR: NO LISTENERS ON BUS"
=GPIB ERROR: CAN’T SEE 9914 GPIA"
=GPIB ERROR: INVALID CONVERSION TYPE"
=GPIB ERROR: OUTPUT TIMEOUT"
"CENTRONICS ERROR: UNSUPPORTED CMD:
%d"
"CENTRONICS ERROR: OUT OF PAPER"
"CENTRONICS ERROR: DEVICE NOT
SELECTED"
~3ENTRONICS ERROR: TIMEOUT"
=CENTRONICS ERROR: OUT OF PAPER"
"CENTRONICS ERROR: PRINTER ERROR"
"RS232 ERROR: UNSUPPORTED CMD: %d"
"RS232 ERROR: PARITY ERROR"
=RS232 ERROR: FRAMING ERROR"
"RS232 ERROR: OVERRUN ERROR"
"RS232 ERROR: BREAK RECEIVED"
=RS232 ERROR: OUTPUT TIMEOUT"
"GENERAL ERROR: ILLEGAL CMD: °/~::1"
=GENERAL ERROR: SOFTWARE ERROR"
"GENERAL ERROR: UNKNOWN HARDCOPY
DEVICE"
=GENERAL ERROR: OUTPUT TIMEOUT"

APPENDIX A-6

OPERATOR WARNINGS

=GENERAL ERROR: OUT OF PAPER"
=GENERAL ERROR: PRINTER ERROR"
=UNKNOWN ERROR #%d"
"TRYING TO LOCK DIFFERENT PLUGINS"
"rRFI: ERROR READING FILE"

"PLUGIN %c CAN’T TRIGGER ON CAL SIGNAL"
=PLUGIN %c CH1 CAL DATA NOT VALID"
=PLUGIN %c CH2 CAL DATA NOT VALID"
=PLUGIN %c CHANNEL MISMATCH"
"WARNING: CHECK SEATING OF MODULE %c"

Problems writing/reading Floppy Disk for
hardcopy

::~: 108 ’:. "VALUE LIMITED BY LOCKED PLUG-IN"

"TRACE n: INPUT DATA WAS ZERO FILLED"
~’ ’:’~" ’ "TRACE n: INPUT DATA HAS

.... OVER/UNDERFLOWS
"TRACE n: NO INPUT DATA"
"TRACE n: FFT INPUT INVALID"
"TRACE n: FFT COMPLEX DATA INVALID"
"TRACE n: PARAMETER IS NOT APPLICABLE’
"TRACE n: PARAMETER CANNOT BE

..... COMPUTED"
"TRACE n: WAVEFORM HAS
UNDER/OVERFLOWS"

A control tried to change on one plugin
but because the corresponding control on
the other locked plugin(s) plugin was set
to the value dictated by the most limiting
plugin.

"TRACE n: WAVEFORM HAS UNDEFINED
POINTS"
"TRACE n: CANNOT PROCESS STRING
PARAMETER"
"CAN’T DISPLAY TRACE WHILE ROLLING"

"PLUGIN n LEVEL IS DISABLED IN AUTO ROLL
MODE"

This message is displayed when in
persistence while traces are rolling
This message is displayed when level is
changed while in auto trigger mode
module does not contain the BRAM
needed to protect data

"PLUGIN n DOES NOT SUPPORT PROTECTED
MODE"
=PLUGIN n NO operation IN PROTECTED MODE" module can not protect RIS, ROLL

MODE, SYNC AVG, and PACKED
SEQUENCE

"CANNOT ALLOCATE MEMORY FOR CHANNEL" there is not enough mainframe memory
for long memory support (7200A only)

APPENDIX A-7

OPERATOR WARNINGS

115’ reserved

1

=FLOPPY DISK IS WRITE-PROTECTED"
=FLOPPY DISK IS WRITE-PROTECTED OR
FORMAT FAILF~"
"FLOPPY DISK IS NOT MSDOS FORMA’I’I’ED"
"FLOPPY DISK IS FULL=

"CANNOT DELFTE FILE"
=CANNOT CREATE FILE"
=CANNOT OPEN FILE"
=CANNOT CLOSE FILE"
=CANNOT MOUNT FLOPPY DISK"
"ERROR FORMATI’ING FLOPPY"
=ERROR WRITING TO FLOPPY DISK"
=ERROR READING FROM FLOPPY DISK"
=NO FLOPPY PRESENT IN DISK DRIVE"
"FLOPPY BEING ACCESSED, FORMAT
ABORTED"
=CANNOT WRITE TO HARD DISK"
=CANNOT READ HARD DISK"
=CANNOT REMOVE OLD FILE"
=CANNOT READ DIRECTORY"
=CANNOT FIND FILE"
"NOT ENOUGH MEMORY"
"RECALL STILL IN PROGRESS"
"STORE STILL IN PROGRESS"
=INTERNAL DISK IS FULL"
=INVALID FILE TYPE, COPY ABORTED"

APPENDIX A-8

OPERATOR ERRORS

OPERATOR ERRORS

An operator error occurs when a command cannot be executed because it contains an ille-
gal request, an error message is displayed and the appropriate codes are set in the Execu-
tion Error Register. The command is ignored.

;CODE MESSAGE DESCRIPTION
’ ii:,:: ::: :i!%:,’

"DATA ERROR: %s" error parsing data (where %s is the data);
....
:!!i I i:i ii .

=INVALID NUMBER BASE: #%s" the data for a remote command does not
......... ILLEGAL CHARACTER: %c" obey the syntax rules

=ERROR PARSING WF COMMAND"
.............. "I’RFI: MISSING DISK PARAMETER"

~RFI: INVALID DISK PARAMETER"
,, "FRFI: MISSING FILE PARAMETER"
¯ :~: "FRFI: INVALID FILE PARAMETER"
’~: ’ "rRFI: NOSUCH FILE"

"ERROR PARSING STRING: %s"
................

iiiii;i~i~i~i¸ii~:ili~J!: ~!!~i:ii~¸ "EXTRA PARAMS IGNORED: %s"
"ERROR PARSING CORS COMMAND"
=ERROR: MISSING KEYWORDS AND VALUES"

’ii !’ i~i~,’’::~’’ I ~;I~ "ERROR: MISSING KEYWORD"
,;:; ::,:, ’:,~ ;, "ERROR: UNKNOWN KEYWORD: %s"
, ;;: "ERROR: ILLEGAL KEYWORD: %s"

iii~ 201 i::~i~ not used
: 202
:~i!i~i~i i~:~i’

not used
"ILLEGAL PREFIX" illegal module ID in remote command or
=PLUG-IN NOT PRESENT" specified lolugin is not present

’,!204,!ii!ilii~=ILLEGAL CHANNEL" illegal channel ID in remote command
205 not used
!¸206 :i!i~ =ILLEGAL UNITS" bad units/multiplier in remote command
207: : "UNKNOWN OPERAND: %s" unknown enumerated type in remote

command
208 data from a remote (or RCL) command

i! not numeric or in the expected number
base

%;NTRL NOT ALLOWED WITH PLUG-INS tried to lock to a nonexistant key
= LOCKED"

=VALUE OUT OF RANGE WITH PLUG-INS lock value out of range for other key(s)
........ LOCKED"

APPENDIX A-9

OPERATOR ERRORS

1211 "NO CHANNEL SPECIFIED" remote command did not specify a
channel or trace number

=NO CHANNELS AVAILABLE" channel specified when It should not have
!iii:iiiiļ :il been such as for a tirnebase or trigger

I i~:i:~!:¸:~!II command

"QUERY ON VERT CMDS MUST SPECIFY query function for vertical command
recieved without e channel specified

14
CHANNEL"

¸¸¸:2 i ;;ii:iii!~ not used
"TRACE n: UNIT ERROR" processing routine error

’,~ :~:i ,~ ~!~/,~ iii ?,:i ,: ~:~ ,~ i~" "TRACE n: VERTICAL UNITS DON’T MATCH"
¯ -TRACE n: HORIZ RANGES DON’T MATCH"
.........:: -TRACE n: DIVIDE BY ZERO*
i!ii ¸¸ i i iii~i:! "TRACE n: LOG OF ZERO*
......... "TRACE n: TOO MANY COEFFICIENTS";: : ::i!i ¸: :

’- "TRACE n: INCOMPATIBLE RECORD TYPES"
"TRACE n: HORIZ EXPAND ERROR"

i!ii!i z̧̧ :i !/!i:!,iii: :!ii/
"TRACE n: INPUT HAS TO0 FEW POINTS"
"TRACE n: COMPUTATIONAL OVERFLOW"

; "TRACE n: OUT OF MEMORY"
"TRACE n: PROCESSING ERROR"

............."TRACE n: CAN’T DECIMATE SEQUENCE
.............. WAVEFORM"

............"WAVEFORM PARAMETERS OUT OF MEMORY"
i1216:1::i!!ilii"NOT ON TOPIC HEADER" Not on Topic Header

::!:217 i~ii~iiii!!"ALREADY IN TABLE OF CONTENTS" Already in TOC

’::218 " "INVALID TRACE NUMBER" invalid trace number for the trace
~i~ i :, ::i:~!::::,, :;iI equation sent over remote
::!:219i:~ii!iinot used

"TRACE IS OFFf CANNOT SELECT" cannot select trace which is tumed off
,::221 !i:il~ not used

:
not used

APPENDIX A-10

OPERATOR ERRORS

=Error at line %d: %s" where %s is:
=expr stack overflow"
=floating point overflow"
=division by zero"
=second operand of mod is zero"
=invalid operands of ^ operator"
=undefined var"
=string overflow"
=number required"
%,ar is loop inde)(’
=var waiting for input"
=bad arg of acos fn"
=bad arg of asin fn"
=bad arg of log fn"
=bad arg of IoglO fn"
=bad arg of sqrt fn"
=Unsupported format option"
=Too many arguments for format specified"
=Too few arguments for format specified"
=bad arg of next fn"
=bad arg of prev fn"
=unknown status"
"wait with no status enabled"
=proc stack overflow"

Auto Sequence Operator error (program
errors) These messages are considered
fatal execution errors as far as the user’s
program is concerned, which means that
they abort any program in progress.

APPENDIX A-11

OPERATOR ERRORS

224 "PRSU: missing value"
’ "PRSU: invalid disk ’%s’."! :

:. "PRSU: invalid file ’%s’."
:: : "PRSU: invalid file ’%s’."

"PRSU: invalid speed ’%s’."
"PRSU: invalid keyword ’%s’."

..... =TURN: missing KNOB/POT parameter"
=Can’t insert keyword ’%s’."

I :: :: "lncompatib ̄ symbo s n data f le" I
=Cannot open input file ’%s’." ,

¯ =Cannot remove old file ’%s’." ,
=Cannot open output file ’%s’." ,

. :::: , "Error read ng from input f e." ,
¯ ’’ "Error wdting to output file."

i : ;iZii!il
......... : ~::.’ =Can’t redefine ’%s’ as list constant." ’
I: : =Can’t insert ’%s’."
....... Incompatible strings in data file."

"INVALID PANEL SEI-rlNGS FILE’S"
.: "input file is empty."

"Please recompile with version %ld of ,
COMPILE."

............. "~’SRC\" and \"APD\" files don’t match.", : i
...... =o/os: missing identifier"

Auto Sequence Operator error (disk
related errors) These messages are
considered fatal operator errors as far as
the user’s program is concerned, which
means that they abort any program in
progress and usually (but not always)
delete it from memory.

¯ i:i:iiii225 ~iiiiiiii

=°/as: plugin not present"
=PRSU: invalid keyword ’%s’."

=INVALID KEYWORD IN COMMAND"
"DUPLICATE TRACE STORAGE DESTINATION
TRACES"
"FILENAME MUST HAVE 3-DIGIT NUMERIC
EXTENSION"
=CANNOT TURN ON RECORD TRACES WHEN
IN REPLAY MODE"
=CANNOT TURN OFF RECORD TRACES WHEN
IN REPLAY MODE"
=THERE ARE NO RECORDED TRACES"
"REPLAY TRACES MODE IS NOT ON"
=FILENAME MUST BE MAX OF 8 CHARS WITH
NO EXTENSION"
"MUST SPECIFY PARAMETER"
"MISSING VALUE"
"MUST SPECIFY LOCATION (1-20)"
not used
"INVALID TRACE EQN: %s"
"ILLEGAL VALUE: %s"
=CANNOT SET %s IN THIS EQUATION"

unknown keyword in remote command
invalid store/recall setup remote command

invalid remote command

Invalid trace equation or trace parameter

APPENDIX A-12

OPERATOR ERRORS

"ILLEGAL TRACE LABEL: TOO MANY Invalid trace label - must be a DOS
compatible filenae

::1 CHARACTERS"
"ILLEGAL TRACE LABEL: %s"
"ILLEGAL CHARACTER IN TRACE LABEL: %c"

~i!i231!i:iii~i;i!i~i"NO SPACE FOR %s" Output response buffer overflow

=OM: QUERY AFTER INDEFINITE RESPONSE Query response (following #0 or OFF
.:. ;..:.: : : :~::::, DISCARDED" trace query) flushed
iiiiii2331i!ii!i~i!i"ERROR #%d TRYING TO ABORT HARDCOPY" Error during plotting or printing

;234iii!ii/"WAVEFORM READ QUERY ERROR" Parsing Error: invalid arguments following
query

’!i:i!ii237ili:::ii~i"NO TRACES TO BE PRINTED" Trying to print trace data and trace is not
turned on

"DOS FILENAMES CANNOT EXCEED 8
CHARACTERS"
"COMMENTS MUST BE 40 CHARACTERS OR
LESS"

’i!iii239:i.iiiiiii!!i I =NOTRACE NUMBER SPECIFIED" Remote mainframe command received
that needs a trace #

2401 =ILLEGAL SOURCE" Invalid source specified in remote
..... command

=ILLEGAL TRACE" Invalid active trace specified in remote
command

iii~!i!:!243ii~i!ii!i:i=INVALID COMMAND TERMINATION" The input manager scaned all remaining
data but did not encounter a proper

..... terminator.
"SECURITY KEY NOT PRESENT" Remote command requires the security

¯ :~ ~ ~i~!i~ii~¸ key (dongle), but it is not present.

:!!:::245 Command can’t be executed while in
protected mode

246 "DATA PROTECTED WITH VERSION n" Data was saved in BRAM with a certain
’i,’~~’~’~

version of software. To recover the data,
move module into a mainframe containing

,i:i̧ ii ~ i.i:i:i~!, the same version.

=SCSI DEVICE NOT READY" The SCSI device indicated by the
commend did not respond to a SCSI test
ready command. This error can occur

, :.:, when entering protected mode. In this
case, protected mode SCSI operations
are inhibited.

APPENDIX A-13

COMMAND ERRORS

COMMAND ERRORS

These are errors encountered while Wing to parse (interpret) a remote command such as, in-
valid syntax, semantic. These errors set the Command Error status bit.

MESSAGE

"COMMAND ERROR: %s"
"ESCAPE COMMAND ERROR: <ESC>%c"
=UNKNOWN OPERAND: °los"
"ILLEGAL DELIMETER(s)"
=INVALID DATA: °los"

DESCRIPTION

Unknown command - invalid syntax
Invalid escape command
Unknown operand
bad delimiters (~ ; etc) in remote command
invalid data in remote command

APPENDIX A-14

QUERY ERRORS

QUERY ERRORS

These are errors caused when a remote computer tries to query the 7200(A) when no data
is present or data is unavailable. These errors cause the query error status bit to be set.

MESSAGE DESCRIPTION

Interrupted Action (IEEE488.2 Sect 6.3.2.3)
Unterminated Action (IEEE488.2 Sect 6.3.2.2)
Query After Indefinite Response (IEEE488.2 Sect
6.5.7.5)
Buffer Deadlock (ie., T1 :WF?;T1 :WF
ALL,#9NNNN...) (IEEE488.2 Sect 6.3.1.7)
=QUERY ERROR: RESPONSE OVERFLOW" Query response too large ... buffer

overflow

APPENDIX A-15

INTERNAL MESSAGES

INTERNAL MESSAGES

These errors are used to Indicate that an intamal consistency check failed but that operation
of the system can continue normally. These messages should rarely occur and only if the
same message appears repeatedly, should you contact the local service representative or
the factory for luther details.

CODEMESSAGE DESCRIPTION

"PCON GAVE EXEC < 2K BUT HAS MORE
............ :::
~:Ui~ii!!i!Uiiii~ilEiizi~i+i+i~i~iii!i!iiiii

PENDING"
~I’RE: COULD NOT FIND TOKEN WITH THESE

;~iiiii!i!!ii!!iiiii!!+!i!iiiii:!iiii!:ilUNITS"
~i!i+i!i:iSO {~ii~ililiiii"INVALID ERROR NUMBER" Invalid error number(bad parameter

passed by caller)

"lll_~=~_l ACQ MGR messA_ge" Illegal Message to ACQ MGR
"Plugin Y~c’s current state is ready* Invalid state transliton

~. "Plugin %c’s current state is armed"
i~i!i4i¸ !!!ili!ilq "Plugin %c’s current state is test"

Xi i:iilYliiii~¢iill } iii:i
"Plugin %c’s current state is processing"
"Plugin %c’s current state is wait retry"

. + =Plugin %c’s current state is delay test"
i:i!i!iS04!:!+~:iii!i"illegal LED~ device °/odv number %d" illegal led number specifed by caller

i~i505 71 "bin copy: %d points < %d pixels" invalid number of points to be binned
"interpolation: partial bin=°/~l" tried to interpolate when no points

.................... unable to interpolate points" assigned
"bad compaction factor=%d" illegal compaction factor

~:::’1508~;iiii~iill "REM PARSE ERR:INVALID CMD TABLE ENTRY" ram parsing err: unknown value type In
COM_ENTRY

"KEY PARSE ERR:INVALID CMD TABLE ENTRY" key/pot parsing err: unknown value type
’ i / :Zx" in COM ENTRY
+ 1510 :: "cannot make options list(bad value type)"); options list err: unknown value type in
:! : :7:1 4? ilii! COM_ENTRY

:::+m ++++"module does not exist" unknown plugln type (see
CPR_mod_decode0)

x¸ ::: ¯ :
::::512 "MEMORY ALLOC ERROR FOR cannot allocate memory for
-+- PREV_VAL_LIST" PREV_VAL_LIST

:i+513’:: "MENU STACK OVERFLOW" menu stack overflow
51++: "MENU STACK UNDERFLOW" menu stack underflow

’m++ COM_ENTRY’s menu_index=0-7(TRACE) but
, ~ l~lugin is not MF

APPENDIX A-16

INTERNAL MESSAGES

516

~517 1

~. 518

~519

"MEMORY ALLOC ERROR FOR TRE SYSTEM"
"MEMORY ALLOC ERROR FOR PROCESStree"
"all tree nodes used"

=tried to free an illegal greek letter"
"ran out of greek letters to allocate"
"units too large: %s"

trace edit stack overflow
trace edit stack underflow
"unknown units: %d"
not used

memory allocation error for prev val of
struct TREE_NODE
no free tree nodes available in free node
list
no more available greek letters in free list

remote form of units string exceeds
COM_ENTRY size

token form of units string is unrecognized

APPENDIX A-17

INTERNAL MESSAGES

memory allocation error for previous value of
TOKEN
=DFM ERROR: PSOS_Suspended node not in

¯ . comp_process"
..................... DFM ERROR: Running node not in

cor~_process"
!i:i!:!:!i

, ;~, "DFM ERROR: COMP PROCESS ARRAY
¯;. CORRUPTED"
’ =DFM DID NOT RECEIVE REPLAY TRACE
l I EQNS" I

=DFM ERROR: BAD TRACE EQN" I

! =DFM DID NOT RECEIVE NORMAL TRACE !
EQNS"

, =INTERNAL DFM ERROR: DATA CORRUPTED" ., :,:.,

=DFM ERROR: BAD TRACE EQN"
=DFM ERROR: INVALID INIT COMMAND"

,::: : ::. =DFM ERROR: UNIMPLEMENTEDCOMMAND" .
¯ =DFM ERROR: INVALID COMMAND"
: DFM ERROR: INVALID WAVE POINTER TYPE ’

TO FIXUP FN"=

"Fixup Function Called For Locked Buffer"
I : :;::" =DFM INTERNAL ERROR #1 =

"DFM INTERNAL ERROR #2"
=DFM INTERNAL ERROR #3"
"DFM INTERNAL ERROR #4"
"DFM INTERNAL ERROR #7"
"DFM ERROR: INCONSISTENT PIP SETUP"

I I . ,, IINTERNAL DFM ERROR: DATA CORRUPTED
=DFM ERROR: Ran out of spec structures"
=DFM ERROR: Did not find parm spec"
"DFM ERROR: Ran out of spec structures"
"DFM ERROR: DIFFERENT INIT FOR PSOS ̄

internal data structures corrupted

SUSPENDED NODE"
=DFM ERROR: GOT PLUGIN READY WHEN
ALREADY HAVE CHANNEL"
=DFM RECEIVED MEMORY READY WHEN
ALREADY HAS IT"
=COP ERROR: TRIED TO ALLOCATE
SEQUENCE ARRAY"
=COP ERROR: TRIED TO ALLOCATE
SEQUENCE TRIG ARRAY"
=COP ERROR: INVALID WAVE POINTER TYPE"
"ILLEGAL MESSAGE SENT TO PIP %c"
"ERROR ATTACHING TO MSG XCHG")

Illegal msg received by PIP
Error attaching to ACQ MGR message
exchange

APPENDIX A.18

INTERNAL MESSAGES

527~ "ERROR IDENITFYING DFM PROCESS" Error identifying DFM process id
528 =ERROR IDENTIFYING DFM PROCESS" Error identifying DFM process id
529 Invalid Led Id

;!i!~iiii530 =’I’RE: COULD NOT FIND COM_ENTRY FOR cannot find COM_ENTRY in tables
.......... TO/od-

=Can’t open input file ’%s’." general units error
=Can’t allocate memory for category ’%s’."

:~ :::; :;~, =Can’t allocate memory for category lists."
=Can’t allocate memory for unit lists."

~:
"Input error reading file ’%s’."
=Can’t read unit heading line from file ’%s’."

, =Can’t read category heading line from file ’%s’."
=Can’t allocate memory for unit table."
=Can’t allocate memory for string ’%s’."
=unknown"
"PLUGIN %c: MUST BE A REMOTE CMD"
"I’RE: INSUFFICIENT MEMORY TO SAVE TO memory allocation error for struct

¯ :, , - BRAM" TRE_SAVE_INFO
’i,,, : =TRE: INSUFFICIENT MEMORY TO RECALL
= : FROM BRAM"

"MEMORY ALLOC ERROR FOR MENU SYSTEM" cannot allocate memory for
"MEMORY ALLOC ERROR FOR MEN_PREV_JR_MENU

......... MEN PREV_JR_MENU" error building display strings
"ERROR SENDING MSG TO DFM=%d" Tried to send a message to DFM to read

I: i , a trace/channel
!~ i535 ~i~i~¸~ error creating list of units
i ii ii~!¸¸̧ ¸¸ "ERROR IN TREmUNITS INTERFACE:

CRT LIS’I"
~,~ ~ 536 "ERROR IN TRE---UNITS INTERFACE: too many intensified regions were found

REM LIST"
=DSK SOFTWARE ERROR #2" software error

i ~1 "DSK SOFTWARE ERROR #3"
¯ :::. ,, ¯ =DSK SOFTWARE ERROR #4"

:. "DSK ERROR: INVALID COMMAND"
"DSK ERROR: RECEIVED CLEAR MEMORIES
IN REPLAY TRACES"
"DSK ERROR: INVALID WAVE POINTER TYPE
TO FIXUP FN"

538 Processing done interrupt error
539 Internal PP error

540 =Internal Program error %d" Internal Auto Sequence error. The #
indicates where in the code error
occured. Report it to the software group.

APPENDIX A-19

INTERNAL MESSAGES

i5527!ili~!i
i

!i!i!i!’ss3~i~i!i~:
+~iiiiii!+554~i+~i?

!i;;;i;5561;;ii!!ii;ii+

i:i~i ::!i;j I

=CHECKSUM ERROR, pHILE CODE
CORRUPTED"
"INSUFFICIENT MEMORY TO START pHILE"
"pHILE THINKS VERIFY CODE IS BAD"
=UNKNOWN pHILE ERROR DURING PHILE INI’I"
=MOUNT_VOL: TOO MANY VOLUMES"
=MOUNT_VOL: NOT A pHILE VOLUME"
=MOUNT_VOL VOLUME ALREADY MOUNTED"
=MOUNT_VOL: ILLEGAL DEVICE"
"MOUNT_VOL: ILLEGAL SYNCH MODE"
=MOUNT_VOL: ILLEGAL DEVICE NAME"
=MOUN’I’_VOL: UNKNOWN ERROR CODE"
=DISK INITIALIZE ERROR"
=Error opening %s"
=Can’t read HLP_INDEX_TABLE"
=Can’t alloc mem for prev_next army"
=Can’t read prev_next army"
"Missing help data (.pna)"
=Can’t alloc mem for HLP_INDEX.TABLE"
"PLUGIN %c CAN’T OPEN TMS FILE"
=PLUGIN %c CAN’T READ FROM FILE"
"PLUGIN %c TMS NOT RESET"
Error reading Help file
"DUMMY ROUTINE CALLED FROM MF_TBL"

not used
=ERROR: SPURIOUS INTERRUPT~
or after a processor exception occurs, it is reported
by one of the following abbreviations:
=BE" "AE" =11" "ZD" =CHIC ~’FIP" =PV" "I’FI"
"LE" =CPW =FE" =UF =SF "L1AV" "I..2AV"
"L3AV* "L4AV~ "L5AV~ =I.6AV" =LTAV~ "T#O"
"I"#I" "I"#2" "I"#3" "r#4" "T#5" "r#6" "I"#7"
"T#8" "I"#9" "I"#10" -I"#I I" "r#12" "I’#13" "I"#14"
"I’#I 5" "FBUC" "FIR" "FZD= "FU" =FOE" "FO" "FSN"
"MC" ’IVlIO" MALV" "IV°/=x" "UV°/~¢’ followed by:
"PC %081x" and then optionally: "IA %081x","
DCFA %081x"t "Invalid Format"
TMS not responding during cal
"*CAL COMMAND TIMEOU’I"
not used
not used
not used
"ERROR DETERMINING MODULE TYPE -
PLUGIN %c", Error determining module type

error initializing pHILE

Error initializing PCON disk operations
Missing help date

Memory allocation error
Error Opening TMS code
Error Reading TMS code
TMS not reset

no command processing routine specified
for command

spurious interrupt occurred (but ignored)
or Exception (BE, AE, etc) occurred

*CAL command timeout

APPENDIX A-20

INTERNAL MESSAGES

::558
559 ~:

560

not used
"PLUGIN %c TMS NOT IDLE"
"WARNING: TOO MANY JNR MENUS, MENU
MAY NOT WORK"
"TRE: BRM BREAKDOWN(CODE 2)"
"TRE: BRM BREAKDOWN"

TMS not going idle as expected
Too many junior menus; possible irratic
operation
Operation not valid/unknown action

"TRE: UNKNOWN BRM_RECALL CODE: %d"
"I’RE: TRIED TO EXECUTE BU RECALL WHILE

¯ ACTIVE"
:562: "BRM: ILLEGAL ID"
....... ’:’.’::.::~ "BRM: BAD COUNT ON ID#%d"

"BRM: INSUFFICIENT SPACE ON ID#%d~n"
~3 "Error %d in Plot Preparation", PL work.stat

"tiC ERR: MUST SELECT A PRINTER FOR
OUTPUT"
"HC ERR: UNKNOWN HC OUTPUT, HARDCOPY

......................... ABORTED"
:L

"NO PCON RESPONSE TO ABORT COMMAND
IN 1 SEC"

565:: i =CP ERROR: CAN’T READ BLOCK 2 OF HARD
DISK"
=Cannot set status bit %d"

Illegal or bad ID/no space on ID

Error during plotting or printing

No PCON response to command

Error reading Hard Disk

Error trying to set status bits

574

57s::

!!/577 ~iiii!:i
i!i ,~ i,’i’!~iJ!!/!~I

"OM ERROR #%d KEY CMD %s"
"PCON sent error #%c[’
"OM ERROR #%d RH MSG %s"

Error sending command to PCON

=OM: ERROR RECALLING IO PARAM FROM Error recalling from BRAM
BRAM"
"OM: UNKNOWN BRM RECALL CODE: %d"
"ERROR IDENTIFING TRM PROCESS" Error identifying TRM process
Error identifying DSCH process
Error during gain calibration
"INVALID TRACE EQUATION FOR TRACE %d"

"PLUGIN %c - ERROR SETTING FLASH MODE"

=CAN’T ALLOCATE PERSISTENCE BUFFER"
=CAN’T GET XY BUFFER"
=CANNOT DISPLAY TIMESTAMPS"

"INSUFFICIENT MEMORY AVAILABLE FOR
PLOT"
"PLUGIN %c ILLEGAL ACQUISITION DONE
INTR"

Error trying to create a tree node - invalid
equation
Error setting desired flash mode during
calibration
Error allocating memory - Can’t do
persistence
Error allocating memory - Can’t display
timestamps
Error allocating memory for raster bit map

ACQ DONE interrupt from non present
plugin

APPENDIX A-21

INTERNAL MESSAGES

~578 Can’t find current index for trig pattern when
triggers are locked

1579 Can’t abort COP processing
_Red histogram/trend value received from DFM

5s0 =UNKNOWN MANTISSA: %f’ The width field for a histogram is invalid
"UNKNOWN WIDTH: %dE%d"
TRIG TIME INIT TIMEOU’I" Trig time menu init Umeout

o
=ERROR READING INPUT BLOCK DATA" Requested input data from PCON but

error occurred
=Error processing waveform data input" Error processing waveform input data

ss4 =CAN’T %s PLUGIN DRIVER \’%s\"" Error loading plugin driver
=CAN’T LINK SYMBOL \’~/os\’~nlN PLUGIN
DRIVER Y’%s\""
=CAN’T LOAD MODULE \’~/~\""

iii iii ! ii !iiiiii
EEPROM programed incorrectly
"TRACE SETUP NOT AVAILABLE" The com_entry for this softkey has

unknown module ID

i i i!;!i Tiiiiiiiiiiiii=INVALID TRACE EQUATION:T%d=%s" The trace equation stored in BRAM is
- ;ii~i!iy i ~ ;ii:!iI -

invalid
+iiiiii e! ii!i!i =TMS ERROR READING DATA MEMORY" TMS has trouble loading tms program
i i!i!i!iii+iii+iiiiiii i ili+!iiiil memory

"TRGSRC CHANNEL 4 NOT ALLOWED" Channel 4 is not a valid trig source in P34
iii590 ili;i~;ii (7200A only) NMI interrupt

ii; sm!+i;!!!ili!!il’ "SCSI ABORT FAILURE" An attempt was made to abort a SCSI
transfer (exiting protected mode) but the
hardware reported that the abort could
not be performed. Operation continues
normally, assuming that the transfer
which was would have been aborted is
not actually In progress.

"SCSI SETUP FAILURE" An attempt was made to initiate a SCSI
read or wdte operation, but the hardware
reported that it was not possible. The
error is ignored, but will probably result in
further errors and incorrect operation of

,!i, ,i~i~iii ’!!!~i’i!? i the SCSI hardware.

APPENDIX A-22

SYSTEM RESTART MESSAGES

SYSTEM RESTART MESSAGES

These messages are reports when a hardware or software condition occurs that put the
7200(A) in an unrecoverable state and after the condition is logged the system is reset to its
default state to try to clear the error. These messages should rarely occur and only if the
same message appears repeatedly, should you contact the local service representative or
the factory for further details.

CODE MESSAGE DESCRIPTION
:1

"scheduler can’t malloc memory"
"can’t create exchange"
"scheduler can’t create msg partition"
=scheduler can’t attach to DUT)C
(also see ERR send_x messages at end of this
file)

error reading/writing DUTX exchange,
display dead

iiii~ii!:!701:iziiiiiii!!ii!=can’t create exchange"
(also see ERR_send_x messages at end of this
file)

error reading/writing DUTC exchange,
display dead

ii~ilill¸ . i/ii:i~iI

i:i:i:i!705:i:!~iii;ii
i! !;:i:i;;

=CANNOT START DISPLAY SCHEDULER"
(also see ERR_send_x messages at end of this
file)
=DS_get_memery: ran out of display memory."
=CANNOT INIT CPR MSG XCHANGE’

error spawning display scheduler
error sending message to command
processor - fp dead
out of display memory, display dead
error reading/writing CPRX exchange,
command processor is dead

,i~ !: 70e~!~iii:iiI,

707

708
i ’

:709
710

711

=CANNOT INIT MEN CRIT MSG XCHANGE"

"MEMORY ALLOC ERROR FOR DS_VTEXTS"

"MEMORY ALLOC ERROR FOR
FIELD_TEX’I" VAL P"
cannot install file (INSTALL application)
(also see ERR_send_x messages at end of this
file)
"FATAL DFM ERROR: EXCHANGE FAILURE"
=FATAL DFM ERROR: CAN’T CREATE
EXCHANGE"

error reading/writing MENC exchange,
menu manager dead
cannot allocate memory for DS VTEXTS
in menu manager
error allocating/freeing memory segments

error sending message to DFM from trace
manager
error reading/writing DFMX exchange,
DFM dead

APPENDIX A-23

SYSTEM RESTART MESSAGES

712 =DFM ERROR: CAN’T SEND MESG TO DSIC
=DFM ERROR: CAN’T SEND MESG TO ACQ"

’ i~ii’ "DFM ERROR: CAN’T SIGNAL EVENTTO TRM" ’
...... :¯ "DFM ERROR: CAN’T SIGNAL COMP PROC" ,

"DFM ERROR: CAN’T SUSPEND COMP
PROCESS"

, =DFM ERROR: CAN’T RESUME COMP
PROCESS"
"DFM ERROR: CAN’T SIGNAL EVENT TO DFM"
=DFM ERROR: CAN’T FIND MY OWN PID"

" "DFM ERROR: CAN’T SIGNAL EVENT TO HC" ’
"DFM ERROR: CAN’T SIGNAL EVENT TO CPR"
=DFM ERROR: CAN’T SEND MESG TO PIP"

........ DFM ERROR: WAVE DESC CHG WHEN HAVE
PLUGIN"

’~: :~’ "DFM ERROR: CAN’T SEND MESSAGE TO CP" ’i --I
’ 7t3 ’ "TRE ERROR: CAN’T SEND MESG TO DFM"

=

"I’RE ERROR: CAN’T SIGNAL EVENT TO DFM"
"I’RE ERROR: CAN’T GET BUF FROM
PARTITION"

714 =COP ERROR: CAN’T FIND MY OWN PID"
, 715:= =COP ERROR: CAN’T SIGNAL EVENT TO DFM"
,:716 "DFM ERROR: CAN’T RET BUF TO PARTITION" ,
, ~,,i , "DFMERROR:CAN’TALLOCSEGFOR

’i ~ i =DFM ERROR: CAN’T GET BUF FROM
PARTITION"

’ DFM ERROR: CAN’T ALLOCATE BINNED
BUFFER"

717 ,, ~ not used
718] "TIMED OUT WAITING FOR ACQUISITION

SYSTEM"

error sending message/event from DFM
to another process

error sending new trace eqn message to
DFM

error signalling event to DFM
error allocating/assigning buffer by COP
error allocating/freeing memory segment

timed out waiting for acqusltion manager

:1

,,,] ,, ,

720

"TIMED OUT WAITING FOR BA’I-rERY RAM"
=FATAL UNT ERROR: CANNOT CREATE
EXCHANGE"
"FATAL UNT ERROR: EXCHANGE FAILURE"
=CPR ERROR: CAN’T FIND MY PID"
=OM ERROR: CAN’T FIND MY PID"
"OM ERROR: CAN’T FIND DFM PID"
=CP: CAN’T SIGNAL IM"

error reading/writing UNTC exchange,
command procr dead, error
reading/writing IMPX exchange
command processor cannot find process
id, cannot function

error signaling IM process

APPENDIX A-7.4

SYSTEM RESTART MESSAGES

"DSK ERROR: CAN’T SEND MESSG TO DFM" error with interprocess communication
"DSK ERROR: CAN’T SIGNAL EVENT TO DFM"
"DSK ERROR: CPR CAN’T SEND MESSG TO
DSK"
=DSK ERROR: CPR CAN’T SIGNAL EVENT TO
DSK"

:ii:~:: "DSK ERROR: CAN’T SIGNAL EVENT TO CPR"
¯ : "DSK ERROR: CAN’T SEND MESSG TO CPR"

"FATAL DSK ERROR: CAN’T FIND MY OWN PID"
¯ "FATAL DSK ERROR: CAN’T CREATE

EXCHANGE"
¯ .:~:J "FATAL DSK ERROR: EXCHANGE FAILURE"

................... "DSK ERROR: CAN’T MALLOC BUFFER"
’ DSK ERROR: INVALID WAVE POINTER TYPE"
....... "DSK ERROR: CAN’T SIGNAL EVENT TO IMAN"

"CANNOT INIT OM MSG XCHANGE" error reading/writing OMPX exchange
not used
not used
not used
=PP ERROR: CAN’T ALLOCATE PP BUFFER" error in interprocess communication
=PP ERROR: CAN’T SIGNAL EVENT TO TRM"
"PP ERROR: CAN’T SIGNAL EVENT TO DFM"
=PP ERROR: CAN’T SEND MESSG TO DFM"
"PP ERROR: CAN’T MALLOC BUFFER"
"PP ERROR: CAN’T GET BUF FROM

........:.::: PARTITION"
"PLUGIN°/~ CAN’TALLOCSEG FOR TMS Error Allocating memory for TMS CODE

,i,~, CODE"
729 not used

~’i730 not used
.1731 not used
,~732 "PCON BUS TIMEOUT: ADDR 0x%x" PCON bus timeoutF restart system

"OM: CAN’T ALLOC SEG FOR RESPONSE Error allocating/freeing/assigning memory
, ::, BUFFER" segment
........... "CP ERROR: CAN’T ALLOC SEG FOR DISK
........ BLOCK"

~M: MEMORY ALLOC ERROR FOR BRAM
......
%¸!¸¸¸¸¸ i ~ ̄ ~;i,

STRUC’I"
"MEMORY ALLOCATION ERROR FOR EXT

........ DESC"
"MEMORY ALLOCATION ERROR FOR TIME

i~ ..i ARRAY"
"CP ERR:CAN’T SEND MESSAGE TO OM" Error reading/writing other message

i "IM ERR: CAN’T SEND MSG TO OM" exchanges

APPENDIX A-25

SYSTEM RESTART MESSAGES

=’I’RE: MEMORY ALLOC ERROR FOR OPT LIST- Error allocating/freeing memory segment
,.. "I’RE: MEMORY ALLOC ERROR FOR PP OPT

I
LIST"

i "ERE: MEMORY ALLOC ERROR FOR
" THE_NODE"

"Can’t send message to CP" Error reading/writing CPRX exchange

ii~!ili~Tiiiii!iiiil=OM ERROR: CAN’T SEND MESSG TO DFIVI" Error reading/writing DFMX exchange
 iiii!7381ili ili;!=OM ERROR: CAN’T SIGNAL EVENT TO DFM" Error signaling DFM process

~9 =I-IC: ERROR SENDING MSG TO DFM=%d" Error reading/writing other message
exchanges

=HC ERROR: CAN’T FIND MY PID" Error signaling other processes
........ HC: CAN’T SIG DFM: NEW CMD"

‘CP: CAN’T ALLOC SEG FOR CMP DSPL MEM & Error allocating/freeing memory segment
PLOT BUF"
"I-IC: CAN’T ALLOC SEG FOR PROGRAM
BUFFER"

........."MEMORY ALLOC ERROR FOR LINES TO SKIP"
=PL_Cont: Fatal Error =/~ in Plot Preparation" Error during plotting or printing

 iiii ii;ii 3 iiiiiii!!ii
"PL_Cont: Error %d*
"IM ERROR: CAN’T ALLOC INPUT BUFFER" Error allocating/freeing/assigning memory
"IM: CAN’T ALLOC SEG FOR AP INPUT BUFFER" segment
=ERROR SENDING MSG TO DSK=%d" Ermrreading/wdting other message

 ili!i!!!iiii iiiii! !i!ii!iii!!i!iiiiii!iii‘CANNOT INIT IM MSG EXCHANGE" exchanges
!i¸ ~i;~i ~i ~:!:ii!:i ‘CAN’T SEND MESSAGE TO CP"

"IM ERROR: CAN’T FIND MY PID" Error signaling events to other processes
..... , "IM ERROR: CAN’T FIND CPR PID"

‘CAN’T SIGNAL DSIC
Error reading/writing other message
exchanges

‘CP ERR:Can’t send SEN CONFIG to OM" Error signaling events to other processes
................. OM: CAN’T SIG DFM: NL=W CMD"

"OM: CAN’T SIG DFM: ABORT STORE CMD"
"CP ERROR: CAN’T ALLOC SEG* Error aUocating/freeing/assigning memory

..... "CP: CAN’T ALLOC SEG FOR INSPECT segments
’" KEYWORD" a. trying to get memory for outputing

"CP: CAN’T ALLOC SEG FOR PRINT BUFFER" query response
¯- =MEMORY ALLOC ERROR FOR TEXT STRING*

=CANNOT FIND A REMOTE HOST- Controller is not GPIB or RS232 -> invalid

7’50
condition

"ACCESS TO DEVELOPMENT VERSION Software development security key not
!;i ~ !i iiiiiiiiiiiiiiii~ i!i~ DENIED* present
:7’51
7’521!!!!

PCON doesn’t seem to be running
"MODULE DRIVER IS INCOMPATIBLE WITH Module ddver is incompatible with

= MAINFRAME*); mainframe code

APPENDIX A-26

SYSTEM RESTART MESSAGES

:753 error reading/writing MEM exchange
"HARDCOPY CAN’TABORTTRACEDATA During hardcopy of waveform data, the
OUTPU~ hardcopy was aborted but the HC

manager could not signal the DFM to
stop; therefore, you must wait for the
hardcopy to complete.

APPENDIX A-27

MAINFRAME ERRORS

MAINFRAME ERRORS

CODE
, ,

, 1100

. :_

MESSAGE DESCRIPTION

"REFERENCE CLOCK NOT PRESENT"
"INCORRECT FRONT PANEL" 7200A only: incorrect front panel key

scanner

APPENDIX A-28

PLUG~IN MESSAGES

PLUG-IN MESSAGES

: 1200 " =PLUGIN %c - CHANNEL %s OVERLOAD" input channel was overloaded

:12os "% c°/~: CALIBRATION ERROR %08x" Calibration errors. These errors get
logged but do not get displayed if dongle

l ill ili ii!i i !iiiil
not present. The 8 digit hexadecimal is a
bit vector, with each bit indicating a

: !ili i =:.: i:~::: different error. Values are described in
~:i: i~i~~ pxxclerr.h.

=PLUGIN %c - CAN’T HALT/UNHALT PLUGIN" mainframe to plugin communications
.. "%c°/od: TMS PROCESSING TIMEOUT" problem

’ "%c%d: TMS PROCESSING ERROR"
"%c%d: ERROR WRITING TO TMS PROGRAM

::i::i::i:!:t207 iii::
RAM"
"PLUGIN %c EEPROM CONTAINS INVALID At initialization the checksum stored in

I: ::: ! ;i~i;:i!i : ii | CHECKSUM" EEPROM did not match calculated one.
Default settings are loaded.

12oB"PLUGIN %c NO or LOW BATTERY" For sandia modules only, Battery Ram is

[i i:iiiii ,iiiiii!!iii!iiiiii:ii! ili!i!iii!il
checked at initialization and upon
entering protected mode

Note: ff Plug-In Is located in slot A in the mainframe, error # will restart at 1200
If Plug-in Is located In slot B In the mainframe, error # will restart at 1300

APPENDIX A-29

Utilities

APPENDIX B: Utilities

Supplied with the LeCroy 7200 Precision Digital Oscilloscope is a Utilities Diskette contain-
ing support programs which can be executed on any IBM-compatible PC running MSDOS.

The disk includes: COMPILE.EXE
7200TALK.EXE
WAVETRAN. EX E
GRAPH. EXE
ICLUTIL.EXE

The programs are described below.

COMPILE.EXE

7200TALK.EXE

WAVETRAN.EXE

Compile.exe is the compiler for 7200 ICL programs. It translates ICL
programs written on a PC into a form the 7200 can understand. To
translate a program in the file filename.src,
type: COMPILE FILENAME.
The file filename.apd will be created and will contain a translated ver-
sion of the program which can then be loaded into the 7200 via 3.5"
floppy disk. See Section 7 of the 7200 Remote Programmer’s Manual.

7200talk.exe is a GPIB communication program. It is self-prompting
and contains built-in help.

7200talk is compatible with the National Instruments PCII, PCIIA, and
PCIII GPIB cards and uses the National Instruments device driver
gpib.com.

Wavetran.exe translates a binary waveform file created by a LeCroy
7200 Precision Oscilloscope and generates ASCII (readable text) out-
put.
Type: WAVETRAN -h for a help message.
To print the data values in the waveform file trace1.000,
type: WAVETRAN TRACE1.000.
The data values will be printed to the screen. To direct the output to
the file data,
type: WAVETRAN -oDATA TRACE1.000.
To print the acquisition control settings and other information associ-
ated with the waveform,
type: WAVETRAN .d TRACE1.000.

APPENDIX B-1

Utilities

The acquisition information will be printed to the screen. To direct the
output to the file info,
type: WAVETRAN -d ..olNFO TRACE1.000.

Wavetran uses another file, called the template file, to interpret the
waveform. The template file describes the structure of the waveform
produced by the oscilloscope. The file 7200.tpl on the Utilities Disk-
ette contains the template for waveforms produced by the 7200 oscil-
loscope. (The template may be read out of the 7200 via GPIB or
RS-232C with the TEMPLATE? remote query, but is provided on the
Utilities Diskette in the file 7200.tpl for convenience). Wavetran uses
the template file named 7200.tpl by default.

To translate waveforms produced by another LeCroy oscilloscope, a
different template file may be specified by adding the -tTEMPLATE
option to the command line.

IMPORTANT: If wavetran is copied onto another disk, it
will not work unless the file 7200.tpl.is also copied into
the same directory.

See Section 3 of the 7200 Remote Programmer’s Manual for a de-
scription of the 7200 waveform format and the template.

The information and data can be printed in different formats by speci-
fying a print format file, as WAVETRAN -fFORMAT.FMT
TRACE1.000. The file all.fmt on the Utilities Diskette is a sample for-
mat file that prints all parts of a waveform, including sequence trigger
times.

Each line of the format file is either a command or the name of a vari-
able (containing acqusition information - eg. VERTICAL_GAIN) to
printed. Lines starting with ’$’ are commands. The commands are:

SPRINT WAVEFORM
prints the entire waveform

SPRINT BLOCK <block name> DEFAULT
prints all variables in the specified block in default order

SPRINT BLOCK <block name> SPECIFIED
prints the variables in the block which appear on
subsequent lines of the format file

SPRINTARRAY <array name><start point<end point>
prints the specified data or time array from start
point to end point
end point = -1 means print to the end

$COLS <num columns>

APPENDIX B-2

Utilities

GRAPH.EXE

ICLUTIL.EXE

specifies number of columns for output format
$LINES <number lines>

specifies number of lines to skip between each line of output
$LABELS <ON or OFF>

specifies whether or not to label the parts of the waveform
SSKIP <num lines>

skip the specified number of lines at the point in this output
$TITLE <title string>

print the specified title string at the point in this output

Graph.exe graphs a list of up to 500 numbers on the screen of a PC.
Type: GRAPH -h for a help message.

To graph the data points in a file called data (which may have been
created by using wavetran to translate a 7200 waveform),
type: GRAPH DATA.

ICLUTIL.EXE is a tool which allows you to create, edit, view, or print
ICL programs. In addition, it allows you to transfer ICL programs be-
tween a personal computer and the LeCroy 7200 Precision Digital
Oscilloscope.

The ICL Utility is designed to run on an IBM Personal Computer or
compatible, which is running DOS 3.0 or greater, and has any of the
following communication port combinations:

a. 1 or more RS-232 serial ports and 1 or more Centronics
compatible parallel printer ports.

b. 1 or more RS-232 serial ports and 1 or more National
Instrumentsmodel PCII, PCIIA, or PCIII GPIB cards.

c. 2 or more RS-232 serial ports.

do 1 or more National Instruments model PCII, PCIIA, or
PCIII GPIB cards.

The following software drivers must be loaded into the computer dur-
ing the boot process:

a. ANSI.SYS or compatible

b. If a National Instruments GPIB card is installed, the device
driver GPIB.COM should be installed

Installation of the device drivers requires that the files named above
be located in the root directory of the disk used to boot the corn-

APPENDIX B-3

Utilities

puter. The device drivers will be loaded into memory provided that a
CONFIG.SYS file which includes these device driver fllenames is also
present in the root directory.

An example of a CONFIG.SYS and GPIB.COM is shown below:

FILES=10

BUFFERS=10

DEVICE=ANSIoSYS

DEVICE=GPIB.COM

The ICLUTIL.EXE program should be present in the same directory
as the ICLUTIL.EXE programs which it creates, edits, and transfers.

In addition, the ICL compiler program, COMPILE.EXE, should be pre-
sent in the same directory.

If these executable files are not located in the same directory, then
both a PATH and APPEND statement should be added to an AUTO-
EXEC.BAT file in the root directory of the disk used to boot the com-
puter. These statements will inform the computer where to find these
programs. The following is a typical example:

Suppose you wish to separate the utility programs from your ICL pro-
grams. The utility programs might be stored in the directory
c:\7200UTIL and the ICL programs might be stored in the directory
C:\ICLPROG. To invoke the ICL Compiler or the ICL Programming
Utility from the directory c:\ICLPROG, the following two lines must be
present in an AUTOEXEC,BAT file in the root directory c:\

PATH=C:\7200UTIL

APPEND C:\7200UTIL

The ICL Utility may be executed by simply typing ICLUTIL, which
causes the Main Menu to be displayed. The boxes displayed on the
left side if the Main Menu correspond to the function keys <FI>
through <F10> on your computer to perform the task associated with
it.

For example, pressing the function key <FI> will recall some helpful
information about the program’s features.

Prior to attempting to communicate with a LeCroy 7200 or a printer,
the program should be configured by pressing <F2> while the Main

APPENDIX B-4

Utilities

Menu is displayed. The communication setup which is displayed,
should agree with the remote control configuration of the LeCroy
7200. The computer communications setup may be modified by
pressing the arrow keys on the keyboard. Press the <Esc> key when
all changes are completed. The program will remember to use the
new setup whenever it is executed.

To transfer programs between your computer and the 7200, you must
set the 7200’s Remote Communication port to the port (GPIB or
RS232) you wish to use. Refer to section 1 of this manuals for more
details and cabling instructions.

APPENDIX B-5

7200 Series Index

7200A Index
T

*CAL? ..5-168
*CLS ..5-169
*ESE ..5-170
*ESR? ..5-171
*IDN? ...5-172
*LRN? ..5-173
*OPC ...5-174
*OPT? ..5-175
*RST ..5-176
*SRE ..5-177
*STB? ..5-178
*TRG ..5-179
*’I’ST? ..5-180
*WAI ..5-t81

A
abs 7-57
acos ...7-58
Acquisition Commands

*’I’RG ...5-179
*’I’ST? ..5-180
ARM_ACQUISITION ARM 5-7
AUTO_SETUP ASET 5-9
REFERENCE_CLOCK RCLK 5-131
STOP ..5-137
TIMEBASE_LOCK TBLK 5-143
TRIG_ENABLE TREN 5-150
TRIG_LOCK TRLK 5-151
TRIG_MODE TRMD 5-152
WAIT ...5-156

ALL_STATUS? ALST? 5-6
ARM_ACQUISITION ARM 5-7
array ..7-28
ARTREJECT AREJ 6-36
ART_REJECT AREJ (7242B Only) 6-3
asin ..7-59
assignment ..7-30
atan ..7-60
atan2 ..7-61
ATTENUATION ATTN 6-4, 6-37
AUTO_CAL ACAL ... 5-8
AUTO_SETUP ASET 5-9
AXIS_LABEL AXlL .. 5-10

B
BANDWlDTH_LIM IT BWL 6-5, 6-38
Binary ..2-18
Block Data ...2-19
BUZZER BUZZ ... 5-11

C
CAE ...5-12
Calibration and Test Commands

*CAL? ...5-168
*RST ...5-176
AUTO CAL ACAL 5-8

call ..7-32
CAR ...5-13
ceil ..7-62
CENT ..5-14
CENTER_MAX CMAX 5-16
Channel ...2-10
ch r ..7-63
CLEAR_DISPLAY CLRD 5-17
CLEAR_MEMORIES CLRM 5-18
CMR ..5-19
COLOR COLR .. 5-20
COMM_FORMAT ... 2-17
COMM_FORMAT CFMF 5-22
COMM_HEADER ... 2-16
COMM_HEADER CHDR 5-24
COMM_ORDER CORD 5-25
COMM_RS232 ... 2-16
COMM RS232 CORS 5-26
COMM_SCSI COSC 5-28
Command Arguments 2-7, 2-11
Command Errors .. 1-14, 2-3
Command Header .. 2-6, 2-9
Command Processing 2-2

Command Errors 2-3
Command Processing Order 2-2
Output from the 7200A 2-3

Command Processing Order 2-2
Command Syntax ... 2-1, 2-5
Command Terminators 2-14

GPIB Terminators 2-14
RS-232-C Terminators 2-15

Commands .. 2-1
comment ...7-33
Communication Commands

Index-1

7200 Series Index

*WAI ..5-181
CENT ..5-14
COMM_FORMAT CFMT 5-22
COMM_HEADER CHDR 5-24
COMM_ORDER CORD 5-25
COMM_RS232 CORS 5-26
COMM_SCSI COSC 5-28
DATA DEST DDST 5-36
GPIB_ADDRESS GPAD 5-66
LOCAL LOC ... 5-84
LOCKOUT LLOK 5-85
REM_CTRL RCTL 5-133
REMOTE REM ... 5-132
SCSI_ID? SCID? 5-135
TRANSFER_FILE TRFI 5-148

Communication Setup screen 1-6
Communication Setup softkey 1-8
Communications Setup screen 1-11
cond ...7-64
Controller ...1-2
COPY..FILE COPY ... 5-29
cos ..7-65
COUPLING .. 6-6
COUPLING CPL ... 6-39
CURSOR LOCK CRLK 5-30
Cursor Measurement Commands

CURSOR_LOCK CRLK 5-30
CURSOR_MEASURE CRMS 5-31
CURSOR_SET CRST 5-32
CURSOR VALUE? CRVA? 5-34
PARAMETERADD PAAD 5-92
PARAMETER AVG PAAV 5-103
PARAMETER CLR PACL 5-104
PARAMETER_DEL PADL 5-105
PARAMETERVALUE? PAVA 5-106
PER_CURSOR_SET PECS 5-108
PER_CURSOR_VALUE PECV 5-110
XY_CURSOR_ORIGIN XYCO 5-162
XY_CURSOR_SET XYCS 5-163
XY_CURSOR_VALUE XYCV 5-165

CURSOR_MEASURE CRMS 5-31
CURSOR_SET CRST 5-32
CURSOR_VALUE? CRVA? 5-34

D
Data Structure ...4-2
Data Terminal Equipment 1-8
DATA DEST DDST .. 5-36
DATE ...5-37
DB-9D ...1-11
DB25-D connector ... 1-8, 1-12

DB9 to DB25 Wiring .. 1-9, 1-11
DB9 to DB9 Wiring .. 1-10
DB9-D connector .. 1-8
DDE ...5-38
DDR ...5-39
DEFINE DEF ... 5-40
DEFINEREPLAY DEFR 5-46
Definite Length ..2-19
DELETE_FILE DELF 5-49
Device Clear ...2-4
Device Interconnectlon 1-8
Directed Header .. 2-9
DIRECTORY_LIST DIR 5-50
display ...7-34
Display Commands ... 5-67

AXIS_LABEL AXIL 5-10
BUZZER BUZZ .. 5-11
COLOR COLR ... 5-20
DISPLAY DISP ... 5-51
DISPLAY_UPDATE DISU 5-52
DOT_JOIN DTJN 5-53
GRID_STYLE GRDS 5-68
HIST_ORIENT HISO 5-75
HOR_MAGNIFY HMAG 5-76
HOR_POSITION HPOS 5-77
INTENSITY INTS 5-83
MULTI_ZOOM MZOM 5-88
MULTI_ZOOM_SETUP MZSU 5-89
PERSIST PERS 5-112
PERSIST_SETUP PESU 5-113
RECALL_PANELS RCPN 5-127
SELECT SEL .. 5-136
STORE_PANELS STPN 5-139
TRACE TRA ... 5-144
TRACE_ANOT TRAA 5-145
VERT_MAGNIFY VMAG 5-154
VERT_POSITION VPOS 5-155
XY_ASSIGN XYAS 5-161
XY_DISPLAY XYDS 5-167

DISPLAY DISP ... 5-51
DISPLAY_UPDATE DISU 5-52
DOT_JOIN DTJN ... 5-53
DPE ...5-54
DPR ...5-55
DTE to DCE Wiring ... 1-10

E
EAE, EBE ..5-57
EAR?, EBR? ... 5-58
Elements of a Program

Order of Operations 7-23

Index-2

7200 Series Index

Relational Operators7-22
String Concatenation Operators 7-22

else ..7-35
elseif ..7-36
EME ...5-59
EMR ...5-60
end ..7-37
endif ...7-38
endloop ..7-39
ENHANCED_RES ERES 6-7, 6-40
Escape Sequences ... 1-13
Event Recording .. 4-4
Example Programs .. 7-3 - 7-17
EXE ..5-61
exp ..7-66
EXR ...5-62

F
FER? ...5-63
FILTER_COEFF FCFF ($1 Option only) 6-8
FILTER_DATA FLTD ($1 Option only) 6-10
FIND_CTR_RANGE FCR 5-64
first ..7-67
floor ..7-68
for ..7-40
format ..7-69
FORMATT_FLOPPY FFLP 5-65

G
GPIB Device Interconnections 1-6
GPIB Host and Hardcopy Operation 1-3 - 1-5
GPIB Programming Examples 8-1

Program Listing .. 8-3
GPIB Service Request 4-1
GPIB Signals and Lines 1-2
GPIB_ADDRESS GPAD 5-66
GRID ..5-67
GRID_STYLE GRDS 5-68
Group Execute Trigger 2-3

H
Hardcopy Commands

HARDCOPY HCPY 5-69
HARDCOPY_SETUP HCSU 5-70
HARDCOPY_TRANS HCTR 5-74

HARDCOPY HCPY ... 5-69
Hardcopy Operation .. 1-3 - 1-5
Hardcopy Operation over GPIB 1-3

Talk Only ...1-3
Talk/Listen ..1-4

HARDCOPY_SETUP HCSU 5-70
HARDCOPY_TRANS HCTR 5-74

Header ..2-11
Hexadecimal ... 2-18
HF_SYNC HFSY ... 6-11, 6-41
HIST_ORIENT HISO 5-75
Histogram Paramaters 5-100
HOR_MAGNIFY HMAG 5-76
HOP_POSITION ... 5-77

I
ICL

abs ..7-57
acos ..7-58
array ...7-28
asin ...7-59
assignment ... 7-30
atan ...7-60
atan2 ...7-61
break ...7-31
call ..7-32
ceil ..7-62
ch r ...7-63
comment ...7-33
cond ..7-64
cos ..7-65
display ..7-34
else ...7-35
elseif ...7-36
endif ..7-38
endloop ...7-39
ens ..7-37
exp ..7-66
first ..7-67
floor ...7-68
for ..7-40
format ...7-69
if ..7-42
input ..7-43
last ..7-73
left ...7-74
list ...7-44
log ...7-75
log 10 ...7-76
menu ...7-45
mid ..7-77
next ...7-78
ord ..7-79
Order of Operations 7-23
prev ...7-81
print ...7-46
procedure ...7-47
query ...7-82

Index-3

7200 Series Index

return ...7-48
right ...7-83
round ...7-64
search ...7-85
sign ...7-86
sin ...7-87
sqrt ..7-88
status ..7-49
strlen ...7-89
tan ...7-90
token ...7-91
trunc ..7-93
type ...7-94
upper ...7-g5
var ...7-51
wait ..7-53
while ..7-54

Identification/Date Commands
*IDN? ..5-172
*OPT? ...5-175
DATE ..5-37
PRW ON STATE PWRO 5-124
UPTIME UPTI ... 5-153

IEEE 488.2 ...1-6
IEEE-488 Standard Messages 2-3 - 2-14

Device Clear (Selective or Universal) 2-4
Interface Clear ..2-4
Local ...2-4
Receiving the Trigger Message 2-3
Remote ...2-4
Remote with Lockout Local 2-4
Serial Poll Function 2-3

IER? ...5-78
if ..7-42
Indefinite Length ..2-19
INE: ..5-79
input ...7-43
INR? ..5-80
INSPECT? ...5-81
INTENSITY ..5-83
Interface Clear ...2-4
INTERLEAVED ILVD 6-12 - 6-13,

.. 6-42 - 6-43
Internal Command Language 7-1

Example Programs 7-3 - 7-17
Introduction ...7-2
Writing a Program 7-2

Internal Messages ... 1-16- 1-22
Interpreting a Waveform 3-3 - 3-8

K
Keywords ..2-14

L
last ..7-73
left ..7-74
list ..7-44
Listener ...1-2
Local ..2-4, 5-84
LOCKOUT ... 5-85
log ..7-75
log 10 ...7-76

M
Main Screen ..1-8
Mainframe Errors .. 1-28
MEMORY_SIZE MSIZ 6-14, 6-44
menu ...7-45
Message Syntax ... 2-5
Message Types ... 2-1

Commands ... 2-1
Message Direction 2-2
Responses ... 2-1
Status ...2-1
Waveforms ... 2-1

mid ..7-77
MSE ...5-86
MSR ..5-87
MULTI_ZOOM MZOM 5-88
MULTI_ZOOM_SETUP MZSU 5-89
Multiple Commands .. 2-8

N
next ..7-78
NUM_ACQ_CHAN NACH 6-15, 6-46

O
OER? ..5-90
OFFSET OFST ... 6-16, 6-45
Operator Errors ... 1-9 - 1-13
Operator Warnings ... 1-2 - 1-8
ord ..7-79
Output Format ... 2-21
Output from the 7200A 2-3
OWR? ...5-91

Index-4

7200 Series Index

P
ParalleI-Centronics Wiring 1-12
PARAMETER_ADD PAAD 5-92
PARAMETER_AVG PAAV 5-103
PARAMETER_CLR PACL 5-104
PARAMETER_DEL PADL 5-105
PARAMETER_VALUE? PAVA? 5-106
PERCURSOR_SET PECS 5-108
PER_CURSOR_VALUE? PECV? 5-110
PERSIST PERS .. 5-112
PERSIST_SETUP PESU 5-113
Plug-In Messages ... 1-29
Plug-in Remote Commands

ART_REJECT AREJ 6-36
ART_REJECT AREJ (7242B Only) 6-3
A’I-rENUATION ATTN6-4, 6-37
BANDWIDTH_LIMIT BWL 6-5, 6-38
COUPLING CPL 6-6, 6-39
ENHANCED_RES ERES 6-7, 6-40
FILTER COEFF FCFF (S1-Option only).6-8
FILTER_DATA FLTD ($1 Option only)._.6-10
HF_SYNC HFSY 6-11,6-41
INTERLEAVED ILVD 6-12, 6-42
MEMORY_SIZE MSIZ 6-14, 6-44
NUM_ACQ_CHAN NACH 6-15, 6-46
OFFSET OFST ... 6-16, 6-45
SAMPLE_CLOCK SCLK 6-17, 6-47
SEGMENTS SEGS 6-18, 6-48
SEQ_OPTION SOPT 6-50
SEQ_OPTION SOPT (7242B Only) 6-19
SEQ_TRIGRATE SQRT 6-20, 6-51
SWEEPS SWPS 6-52
SWEEPS SWPS (7242B Only) 6-21
SYNC_AVG_OPT SAOP 6-53
SYNC_AVG_OPT SAOP (7242B Only)...6-22
TIME_DIV TDIV .. 6-23,
TRGDLY_UNIT TDUN 6-24
TRIG_COUPLING TRCP 6-25
TRIG_DELAY TRDL 6-26
TRIG_LEVEL TRLV 6-27
TRIG_PA’I-rERN TRPA 6-28
TRIG_SELECT TRSE ~6-30
TRIG_SLOPE TRSL 6-33
VOLT_DIV VDIV 6-34

Port Configuration ... 1-1
prev ..7-81
print ..7-46
procedure ..7-47
PROG_ARG PRAR ... 5-114
PROG_CLEAR PRCL 5-115
PROG_COMPILE PRCO 6-116
PROG_LIST PRLI ... 5-117

6-54
6-56
6-57
6-58
6-59
6-60
6-62
6-64
6-65

PROG MODE PRMO 5-116
PROG_RECALL PRRC 5-119
PROG_SETUP PRSU 5-120
PROG STORE PRST 5-122

Program Commands
*LRN? ...5-173
PROG_ARG PRAR 5-114
PROG_CLEAR PRCL 5-115
PROG_COMPILE PRCO 5-116
PROG_LIST PRLI 5-117
PROG_MODE PRMO 5-118
PROG_RECALL PRRC 5-119
PROG_SETUP PRSU 5-120
PROG_STORE PRST 5-122

PROTECT_MODE PRMD ($1 Option only) .. 5-123
PRW ON STATE PVVRO ($1 Option only) _5-124

Q
query ...7-82
Query Errors ... 1-15
Query Syntax .. 2-7
QYR? ..5-125

R
RECALL REC ... 5-126
RECALL_PANELS RCPN 5-127
RECALL_SETUP RCST 5-128
RECORD_TRACES RECT 5-130
REFERENCE_CLOCK RCLK 5-131
Register Model .. 4-2
REM_CTRL RCTL .. 5-133
Remote ..2-4
Remote Control Operation over GPIB 1-3

Talk/Listen ..I-3
REMOTE REM .. 5-132
Remote with Lockout Local 2-4
REPLAY_TRACES REPT 5-134
Response Syntax .. 2-15 - 2-16
Responses ..2-1
return ...7-48
right ...7-83
round ...7-84
RS-232-C Configuration

DB9 to DB25 Wiring I-9, 1-11
DB9 to DB9 Wiring 1-10
DTE to DCE Wiring 1-10
ParalleI-Centronics Wiring 1-12
RS-232-C Host Interconnection 1-8
RS-232-C Interconnections for Hardcopyl-11
Setup the Serial Port 1-8

Index-5

7200 Series Index

RS-232-C Host Interconnection 1-8
RS-232-C Host Operation 1-12 - 1-13
RS-232-C Interconnections for Hardcopy 1-11
RS-232-C Output Format 2-21
RS-232-C Remote Control 1-7
RS-232-C serial printer/plotter 1-11
RS-232-C Service Request 4-1
RS-232-Configuration 1-8 - 1-11

S
SAMPLE_CLOCK SCLK 6-17
Satus Data Structures

Queue Model .. 4-2
SCSI_ID? SCID? ... 5-135
search ..7-85
SEGMENTS SEGS ... 6-18, 6-48 - 6-49
SELECT SEL ... 5-136
Selecting the Computer 1-1
SEQ_OPTION SOPT 6-19, 6-50
SEQ_TRIGRATE SQRT 6-20, 6-51
Sequence Trigger .. 3-2
serial communication 1-8
Serial Poll Functions 2-3
Setting the GPIB Address 1-3
Setup the Sedal Port 1-8
sign ..7-66
sin ..7-87
SMPL_CLOCK SCLK 6-47
Source ...2-10
sqrt ..7-68
Standard Header ... 2-11
Status ..2-1, 7-49
Status Byte Operation 4-1,4-3, 4-5
Status Data Structures

Register Model ... 4-2
Status Messages ... 4-1
Status Register Commands

*CLS ..5-169
*ESE ...5-170
*ESR? ...5-171
*OPC ...5-174
*SRE ...5-177
*STB?: ...5-178
ALL_STATUS? ALST? 5-6
CAE ...5-12
CAR? ..5-13
CMR? ..5-19
DDE ..5-38
DDR? ..5-39
DPE ...5-54
DPR? ..5-55

EAE, EBE ...5-57
EAR?, EBR? ... 5-58
EME ..5-59
EMR? ..5-60
EXE ..5-61
EXR? ..5-62
FER? ..5-63
IER? ..5-78
INE ..5-79
INR? ...5-80
MSE ..5-86
MSR? ..5-87
OER? ..5-90
OWR? ...5-91
QYR? ..5-125
WPE ...5-159
WPR? ...5-160

STOP ...5-137
STORE STO ... 5-138
STORE_PANELS STPN 5-139
STORESETUP STST 5-140
String ...2-13
stden ..7-89
SWEEPS SWPS ... 6-52
SWEEPS SWPS (7242B Only) 6-21
SYNC_AVG_OPT SAOP 6-53
SYNC_AVG_OPT SAOP (7242B Only) 6-22
System Header ... 2-11
SYSTEM MESSAGES 1-1
System Restart Messages 1-23 - 1-27

T
Talk Only ...1-3
Talk/Listen ...1-3 - 1-4
Talker ..1-2
tan ..7-90
TEMPLATE? TMPL? 5-142
Text ...3-2
TIME_DIV TDIV .. 6-23, 6-54 - 6-55
TIMEBASE..LOCK TBLK 5-143
token ..7-91
Trace ...2-10
Trace Equation Setup

CENTERMAX CMAX 5-16
CLEAR_DISPLAY CLRD 5-17
DEFINE DEF .. 5-40
DEFINE_REPLAY DEFR 5-48
FIND_CTR_RANGE FCR 5-64
TRACE_LABEL TRLB 5-147

TRACE TRA .. 5-144
TRACE_ANAT TRAA 5-145

Index-6

7200 Series Index

TRACE_LABEL TRLB 5-147
TRANSFERFILE TRFI 5-148
TRGDLY_UNIT TDUN 6-24, 6-56
TRIG_COUPLING TRCP 6-25, 6-57
TRIGDELAY TRDL 6-26, 6-58
TRIG_ENABLE TREN ($1 Option only) 5-150
TRIG_LEVEL TRLV .. 6-27, 6-59
TRIG_LOCK TRLK .. 5-151
TRIG_MODE TRMD 5-152
TRIG_PAl-FERN TRPA 6-28, 6-60
TRIG_SELECT TRSE 6-30, 6-62
TRIG_SLOPE TRSL 6-33, 6-64
trunc ...7-93
type ..7-94

U
upper ...7-95
UPTIME UPTI .. 5-153
Utilities ...1-1

7200TALK.EXE .. 1-1
COMPILE.EXE ... 1-1
GRAPH.EXE ... 1-3
ICLUTIL.EXE .. 1-3
WAVETRAN.EXE 1-1

STORE STO ... 5-138
STORE_SETUP STST 5-140

Waveform Template 3-1 - 3-2
Waveform Transfer ... 3-1
Waveform Transfer Commands

INSPECT INSP .. 5-81
TEMPLATE TMPL? 5-142
WAVEFORM WF 5-157
WAVEFORM? WF? 5-158

WAVEFORM WF .. 5-157
WAVEFORM? WF? .. 5-158
Waveforms ..2-1
while ..7-54
WPE ..5-159
WPR? ..5-160
Writing a Program ... 7-2

X
XY_ASSIGN XYAS ... 5-161
XY_CURSOR_ORIGIN XYCO 5-162
XY_CURSOR_SET XYCS 5-163
XY_CURSOR_VALUE? XYCV? 5-165
XY_DISPLAY XYDS 5-167

V
var ..7-51
VERT_MAGNIFY VMAG 5-154
VERT_POSITION VPOS 5-155
VOLT_DIV VDIV .. 6-34, 6-65

W
WAIT ..5-156, 7-53
Waveforrn Data ... 2-13
Waveform Data Syntax 2-17 - 2-22

Data Element Format 2-17
Data Encoding .. 2-18
Data Width ..2-18

Waveform Storage
CLEARMEMORIES CLRM 5-18
COPY_FILE COPY 5-29
DELETE_FILE DELF 5-49
DIRECTORY_LIST DIR 5-50
FORMAT_FLOPPY FFLP 5-65
PROTECT_MODE PRMD 5-123
RECALL REC ... 5-126
RECALL..SETUP RCST 5-128
RECORD_TRACES RECT 5-130
REPLAY_TRACES REPT 5-134

Index-7

	Port Configuration
	Command Syntax
	Waveform Transfer
	Status Messages
	Mainframe Remote Commands
	Plug_In Remote Commands
	Internal Command Language
	GPIB Programming Examples
	Appendix A _System Messages
	Addenda

